Introduction
The metaphoric idea behind employing the icosahedral loudspeaker array (ICO) in music is to "orchestrate" reflecting surfaces, resulting in the perception of auditory objects at distinct locations in the room [1].

An early study [2] about the perceived direction of auditory objects created by directional sound sources such as the ICO confirms the influence of orientation of directivity on localization deviating from the direct path. In extension to this preliminary study, this contribution focuses on the perceived distance of auditory objects created by the ICO. The controllability of the perceived distance is examined, which is essential for the application of the ICO as an instrument.

We briefly discuss the method to control the perceived auditory distance using a variable-order directional source and subsequently design a listening experiment based on an auralized room. After this, we discuss results, which are modeled in the last section.

Controlling the auditory distance
In electro-acoustic music, the notion of adjustable-directivity loudspeakers was introduced in the late 1980s by researchers at IRCAM. For the renowned concept study "la timée" [3], a cube housing six separately controlled loudspeakers was built to achieve freely controllable directivity. In 2006, researchers at IEM reconsidered the theory and built a larger and more powerful 20-sided, 20-channel playback device yielding controllable 3rd-order directivity patterns [4] (see Fig. 1).

Recently Laitinen [5] presented a method to control the perceived distance of an auditory object by changing the directivity pattern of a cubical loudspeaker array. Directivity control was used to modify the amount of reverberant energy. The direct-to-reverberant energy ratio (D/R-ratio) is known to be a prominent cue for distance perception (see [6] for a thorough review). The D/R-ratios in numbers does not only depend on the directivity pattern but is essentially shaped by the room response. Still, directivity-pattern designs can be defined that accomplish room-independent control of the auditory distance. Following the idea in [5], the controllability of auditory distance is examined in closer detail here, after allowing a more thorough control of directivity.

Considered directivity patterns are based on frequency-independent max-rE beampattern designs, which exhibit a relatively narrow main lobe and permits sufficiently well suppressed side lobes [7]. Seven different directivity patterns were tested, denoted as $A_1 \ldots A_7$. Table 1 lists these patterns $A_1 \ldots A_7$ in particular, and Figure 2 shows the patterns $A_1 \ldots A_4$ (normalized to constant energy).

Experimental Setup
We investigated the influence of beampatterns on the perceived distance in a listening experiment. The experiment was done at IEM in Graz and is part of a more comprehensive study submitted to DAFx 2016 [8].

Direct sound and early reflections were auralized using the image source method [9], whereas diffuse sound was simulated with the software toolbox MCRoomSim [10].

Table 1: Properties of tested directivity patterns.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Directivity Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>3rd order max-rE beam towards listener</td>
</tr>
<tr>
<td>A_2</td>
<td>2nd order max-rE beam towards listener</td>
</tr>
<tr>
<td>A_3</td>
<td>1st order max-rE beam towards listener</td>
</tr>
<tr>
<td>A_4</td>
<td>omnidirectional beampattern</td>
</tr>
<tr>
<td>A_5</td>
<td>1st order max-rE beam away from listener</td>
</tr>
<tr>
<td>A_6</td>
<td>2nd order max-rE beam away from listener</td>
</tr>
<tr>
<td>A_7</td>
<td>3rd order max-rE beam away from listener</td>
</tr>
</tbody>
</table>

Figure 1: Adjustable-directivity loudspeakers "la timée" (left) and ICO (right).

Figure 2: Directivity patterns $A_1 \ldots A_4$ normalized to constant energy.
The auralized room is shoebox shaped (10.3 m × 12 m × 4.8 m) with a frequency-independent absorption coefficient of 0.3 and a mean reverberation time of 700 ms. Playback employed a ring of 24 equally-distributed Genelec 8020 loudspeakers with a radius of r = 1.5 m, placed in the anechoic laboratory of the IEM. Figure 3 shows the setup and positioning of the auralized room.

Each listener’s task was to indicate the perceived distance on a graphical user interface displaying a continuous slider for each sample in a multi-stimulus set to permit comparative rating along the ordinal scale very close (vc), close (c), moderate (m), distant (d), and very distant (vd). The subjects were allowed to repeat each sample at will, and sound files were played back in a loop.

During the listening session, the listener was requested to face loudspeaker 1 (φ = 0°), which corresponds to the direction of the auralized sound source.

Fifteen listeners participated in the test. All of them were experienced listeners with normal hearing.

Conditions

To allow comparison, sounds comply with sounds from earlier experiments [2, 5]. We used female speech (S1, sample taken from CD B&O 101, 1992) and Gaussian white noise (S2) with signal spectrum and envelope shaped to the speech signal [11, 12]. Both sounds were equalized in level.

The listening test was carried out as a multi-stimulus test in a MUSHRA-like procedure [13]. Each sample represents a directivity pattern and sound.

Both sounds S1/2 were tested with directivities A1...7 in individual sets yielding responses x1...7 for each subject and sound. To compare results from different sounds, A1...7(S1) and A1...7(S2), an additional multi-stimulus set included the selected conditions A1,4,7(S1,2) for both sounds, yielding the responses x1,4,7 for each subject and sound. The responses x1,2,3 and x1,4,5 were re-mapped for each listener and sound by linear scaling and shifting to match x1,4 with x1,4, and x1,7 with x1,7, respectively:

\[
x_i = \begin{cases}
 x_{i}^{\text{II}} & \text{for } i \in \{1, 4, 7\}, \\
 \frac{x_{4}^{\text{II}} - x_{1}^{\text{II}}}{x_{4}^{\text{II}} - x_{1}^{\text{II}}} (x_{i}^{\text{I}} - x_{1}^{\text{I}}) + x_{1}^{\text{I}} & \text{for } i \in \{2, 3\}, \\
 \frac{x_{7}^{\text{II}} - x_{4}^{\text{II}}}{x_{7}^{\text{II}} - x_{4}^{\text{II}}} (x_{i}^{\text{I}} - x_{4}^{\text{I}}) + x_{4}^{\text{I}} & \text{for } i \in \{5, 6\},
\end{cases}
\]

i.e., a complete response set x1...7 per listener and sound.

Results

Figure 4 shows median values and corresponding 95% confidence intervals of x1...7 using Eq. (1).

For conditions A1...5, the auditory distance increases monotonically for both sounds. An analysis of variance (ANOVA) of neighboring values reveals conditions A1...5 to be significantly different (p < 0.09). By contrast, conditions A5...7 do not yield a significant change (p ≥ 0.74). The choice of the sound S1 or S2 does not yield a significant difference (p = 0.52), so that the considerations below only uses pooled responses for both sounds S1,2.

Modeling the auditory distance

The question is whether the responses can be explained by characteristic metrics used to characterize the spatial sound field in psychoacoustics. Linear regression based on the following simulated metrics were tested:

- Direct-To-Reverberant Energy Ratio,
- Lateral Energy Fraction,
- Inter-aural Cross Correlation Coefficient.

The D/R-ratio is widely accepted for prediction of auditory source distance and hence the most obvious predictor. By contrast, the Lateral Energy Fraction (LF) and Inter-aural Cross Correlation Coefficient (IACC) are both used to describe either listener envelopment or apparent source width [14, 15, 16]. While the D/R and Lateral Energy ratios are positively correlated with features relevant for auditory distance, the IACC is negatively correlated. Regression uses 1–IACC.
distance assessment

vd
vc
m
d
c

Figure 5: Comparison of median and 95% confidence intervals of assessed distance pooled over sounds $S_{1,2}$ with predictors based on D/R-ratio, LF, and 1−IACC.

Figure 5 compares the median and 95% confidence intervals with the linear regression models for the conditions $A_{1/7}$.

All models yield curves that are highly correlated with the experimental data. Interestingly, spatial measures quantifying the apparent source width turn out almost perfect. This is underlined by their correlations of $R^2 = 0.97$ for the LF and $R^2 = 0.99$ for 1−IACC, whereas the D/R-ratio reaches $R^2 = 0.93$.

Conclusion

We investigated the influence of frequency-independent max−r_E directivities on the perceived auditory distance. We could show that for a variable-directivity source pointing its beam towards and away from the listener is able to evoke a series of pronounced and graduated distance impressions.

The mapping of the directivities $A_{1/7}$ to the perceived distance curve is sigmoid-shaped and thus we could confirm a signal-independent range of controllability.

Finally, we showed that each the D/R-ratio, the LF, and 1−IACC are suitable in linear regression models yielding curves highly correlated to the responses.

Acknowledgments

Our research was partly funded by the Austrian Science Fund (FWF) project nr. AR 328-G21, Orchestrating Space by Icosahedral Loudspeaker (OSIL). We thank all subjects taking part in the experiment, which was supported by the project Acoustic Sensing and Design (ASD), granted by the Austrian ministries BMVIT, BMWFJ, the Styrian Business Promotion Agency (SFG), and departments 3, 14 of the Styrian Government. For these institutions hosting the Competence Centers for Excellent Technologies (COMET, K-Project), the Austrian Research Promotion Agency (FFG) processes and monitors funding.

References