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Abstract
Compact spherical/cubical loudspeaker arrays are used as beamformers to radiate focused sound with adjustable
direction. A common enclosure housing all the transducers is easier to manufacture but acoustically couples
their motion, which appears to make their independent control more challenging. However, simple analytic IIR
filters to control cubical arrays were recently published and motivate the effort to investigate their existence
for more general common-enclosure arrays in the future. This contribution describes the analytic model of
the interior crosstalk in (i) rectangular cuboid enclosures housing multiple piston-shape transducers and (ii) in
spherical enclosures housing multiple cap-shape transducers. For both models, this contribution shows the ac-
curate integrals over the interior modes that evaluate both the contribution of the transducers’ velocity boundary
conditions and the forces by which the produced pressure loads on active/passive transducers. A fully causal
model is obtained by assuming a damping constants for the interior modes. Both models are demonstrated and
for the cuboid model, the full electro-acoustic model is shown to compare well to laser velocity measurements
on a physical prototype. This verifies the model up to frequencies at which transducers break up into partial
vibrations. Higher-order interior modes often become irrelevant, as at high frequencies the transducer mass
starts to dominate. Simple, well-calibrated IIR control appear feasible, in general.
Keywords: acoustic coupling, common-enclosure cube/sphere loudspeaker arrays, cross-talk cancellation

1 INTRODUCTION
Sphere- and cube-shaped or platonic loudspeaker arrays have been discussed in various papers [3, 12, 5, 2, 13,
10, 9, 7, 1, 14, 11] that established the electroacoustic background and technology required to describe compact
spherical loudspeaker arrays built with electrodynamic transducers, in order to drive them with superdirectional
beamforming.

(a) Helmholtz and force integral (b) Cuboid enclosure (c) Spherical enclosure

Figure 1. The coupling forces between sending and a receiving parts of a coboid or spherical enclosure are
evaluated as impedance matrix using the Helmholtz integral over the vibrating surface Si and the resulting force
from the integrated pressure load on the receiver surface S j.

This work is inspired by the simple analytic models that works for a 4-channel horizontally beamforming loud-



speaker cube [4], and it refines the models [13, 9, 7]. This is done with the purpose to simplify velocity
control, and might yield simple time-domain multichannel filters to digitally equalize the transducer velocities
and remove the cross talk of the interior acoustic coupling.
Based on the refined model and measurements, we can show which model parts are often negligible (e.g. higher
interior modes) or would be much effort for limited benefit (modal break up of the loudspeaker cone vibration).

2 ACOUSTIC COUPLING BETWEEN RIGID ENCLOSURE PARTS
The motion of transducers mounted on a common enclosure is coupled by the impedance Za,i j

Fj = ∑
i

Za,i jvi. (1)

that yields a force Fj due to any transducer velocity vi. To get the impedance, Za,i j, we calculate the force on
a resting, piston-shaped interior surface part S j by the integral Fi j =

∫
S j

p(sssj)dsss j of the sound pressure p(sss j)

loading on S j. The integrated sound pressure p(sss j) is caused by a piston-shaped surface part Si vibrating with
the velocity vi. It results from the Helmholtz integral p(sss j) =

∫
Si

∂ p
∂n Gdsssi = iωρ vi

∫
Si

Gdsssi using the interior-
problem Neumann Green’s function G(sssi− sss j). This function is observed at xxx with a source at xxx0, and it is
defined by the non-homogeneous Helmholtz equation with the wave number k = ω

c

(4+ k2)G =−δ
3(xxx− xxx0), (2)

and G fulfills the boundary condition ∂G
∂n(sss) = 0 everywhere perpendicular to the given enclosure sss ∈ S. It is

composed of interior modes G = ∑lmn γ ψlmn(xxx). These interior modes are countable, have 3 indices in 3D,
they are orthogonal (normalized)

∫∫∫
ψl′m′n′(xxx)ψlmn(xxx)d3xxx= δll′δmm′δnn′ eigenfunctions to the Laplacian 4ψlmn =

−k2
lmnψlmn, with the real-valued wave number k2

lmn as eigenvalue. The required modes and their eigenvalues
support the homogeneous normal velocity boundary conditions vn =

i
ωρ

∂ψlmn(sss)
∂n(sss) = 0 everywhere on the enclosure

sss ∈ S. Inserted into the Helmholtz equation ∑lmn(k2−k2
lmn)γ ψlmn(xxx)d3kkk =−δ 3(xxx−xxx0) and using orthonormality

by multiplication with ψl′m′n′ and integration over xxx, the unknown coefficient becomes γ = −ψl′m′n′ (xxx0)

k2−k2
lmn

so that

Green’s function becomes

⇒ G(xxx− xxx0) =−∑
lmn

ψlmn(xxx)ψlmn(xxx0)

k2− k2
lmn

=− lim
σlmn→+0

c2
∑
lmn

ψlmn(xxx)ψlmn(xxx0)

(ω− iσlmn)2−ω2
lmn

. (3)

A mode-specific positive and real damping constant σlmn has been introduced for a causal solution.

Coupling forces: Apart from obtaining problem-specific modes ψlmn, obtaining the coupling impedance Za,i j
requires to integrate the source mode ψlmn(sssi) over Si and the field mode ψlmn(sss j) over S j

Fj =−∑
i

vi ∑
lmn

iωρc2 ∫
Si

ψlmn(sssi)dsssi
∫

S j
ψlmn(sss j)dsss j

(ω− iσlmn)2−ω2
lmn

=−∑
i

vi ∑
lmn

Z(lmn)
a,i j = ∑

i
vi Za,i j. (4)

Lower modes integrate to a sample-and-weight approximation limlmn→0
∫

S ψlmn(sss)dsss=−ψlmn(xxx)
∫

S dsss=ψlmn(xxx)A
because they do not vary much over position

lim
lmn→0

Z(lmn)
a,i j =−

iωρc2 ψlmn(xxxi)Ai A j ψlmn(xxx j)

(ω− iσlmn)2−ω2
lmn

. (5)

Without approximation, the constant 0 Hz mode ψ000 =
√

V
−1

, ωlmn = 0 responds with the impedance to the
transducer velocity, with the known stiffness ρc2A2

V , and for simplicity σ000 = 0,

Z(000)
a,i j =−

iωρc2 Ai A j

ω2 V
=

ρ c2 Ai A j

iω V
. (6)



2.1 Acoustic coupling between vibrating pistons of a rectangular cuboid enclosure
The interior modes for a rigid cuboid rectangular box uses cosine modes with corresponding wave numbers klmn

ψlmn(xxx) =
cos( π

Lx
l x)cos( π

Ly
my)cos( π

Lz
nz)√

LxLyLz(2−δl)−1(2−δm)−1(2−δn)−1
, k2

lmn = ( π

Lx
l)2 +( π

Ly
m)2 +( π

Lz
n)2,

and ensure zero-velocity boundaries ∂ψlmn
∂x

∣∣
x=0,Lx

= ∂ψlmn
∂y

∣∣
y=0,Ly

= ∂ψlmn
∂ z

∣∣
z=0,Lz

= 0, l,m,n ∈ N0. Appendix A
solves the integrals of the modes ψ(xxx) over both the emitting and receiving piston.

Solution: For evaluation at constant z and excitation at constant x, for instance, assuming a piston radius Rp,
we get the modal coupling impedance Z(lmm)

a,i j with all scalars and constants (ωlmn = klmnc)

Z(lmn)
a,i j =−

iωρc2 ψlmn(xxxi)
2Rp J1

(
π Rp

√
( l

Lx
)2 +( m

Ly
)2
)

√
( l

Lx )
2+( m

Ly )
2

2Rp J1

(
π Rp

√
( m

Ly
)2 +( n

Lz
)2
)

√
( m

Ly )
2+( n

Lz )
2

ψlmn(xxx j)

(ω− iσlmn)2−ω2
lmn

. (7)

The sample-and-weight approximation for low orders / small arguments J1(x) ≈ x
2 verifies the solution by ap-

proaching Eq. (5) for both modal multipliers; exemplarily: limlm→0
2Rp J1

(
Rpπ

√
( l

Lx )
2+( m

Ly )
2
)

√
( l

Lx )
2+( m

Ly )
2

= π R2
p = A.

2.2 Acoustic coupling between between vibrating caps of a spherical enclosure
The acoustic coupling in a spherical enclosure works similar as above, but uses interior modes of a sphere, a
direction vector θθθ , the variable radius r and R is the radius of the enclosure,

ψlmn(xxx) = Nln Y m
n (θθθ) jn

(
kln r

)
, with klmn = kln such that j′n(klnR) = 0. (8)

The spherical harmonics Y m
n (θθθ) are orthonormal

∫
S2 Y m

n Y m′
n′ dθθθ = δ mm′

nn′ , and the orthogonal spherical Bessel fuc-
ntions jn(klnr) are normalized by Nln as derived in Appendix B. The wave numbers kln need to be found to as
roots of j′n(klnR) = 0 to fulfill the boundary conditions; l,n,m ∈ N0 with 0≤ n, |m| ≤ n, and l counts the zeros
of j′n(klnR) = 0 upwards. Non-trivial modes jn(klnr) 6= 0 exist for n = 0,1 using l ≥ 0, and n > 1 with l ≥ 0.

Spherical cap function: The integral of Y m
n (θθθ) over a spherical cap at the radius R is known to be R2 Y m

n (θ0)an

an = 2π

{
cos α

2 Pn(cos α
2 )−Pn+1(cos α

2 )
n , for n > 0

1− cos α

2 , for n = 0.
(9)

Solution: The response is of the same structure as for the cuboid, only the middle part with the cap shapes is
now exactly square and contains the term N2

ln jn(klnR)2 R3 Eq. (23) (shorthand N2
ln jn(klnR)2 R3 = (2+δl)(klnR)2

(klnR)2−n(n+1) )

Z(lmn)
a,i j =−

iωρc2 Y m
n (θθθ i)

[
(an R2)2

R3 (N2
ln jn(klnR)2 R3)

]
Y m

n (θθθ j)

(ω− iσln)2−ω2
ln

; (10)

summation over m could be further simplified by ∑m Y m
n (θθθ i)Y m

n (θθθ j) =
2n+1

4π
Pn(θθθ

T
i θθθ j). App. B Eq. (25) verifies a

sample-and-weight approximation [anR2]2 = [2πR2(1− cos α

2 )]
2 = A2 for α → 0, which yields with the spherical

volume 1
R3 = 4π

3V and the shorthand normalizer Z(lmn)
a,i j = − iωρc2

(ω−iσln)
2−ω2

ln
Y m

n (θθθ i)
4πA2

3V

[
(2+δl)(klnR)2

(klnR)2−n(n+1)

]
Y m

n (θθθ j). For

the zeroth-order mode (Y 0
0 )

2 = 1
4π

this approximation is exact. For the modal frequency ω00 = 0 of l = 0 with

σ00 = 0, the square brackets yields 3, and we get the known stiffness Z(000)
a,i j =− iωρc2A2

ω2V = 1
iω

ρc2A2

V .



parameter value unit parameter value unit

coil resistance Rc 3.2·1 Ω coil inductance Lc 0.6·10−3 H

transduction constant Bl 4.4·1 Tm

effective piston area A 129·10−4 m2 dynamically moved mass Mm 12·10−3 kg
equivalent volume Vm 38·10−3 m3 → stiffness Sm = ρc2A2/Vm 618·1 N/m

mechanical Q factor Qm 2.16·1 - → damping Rm =
√

MmSm/Q 1.26·1 Ns/m

edge length Lxyz 22·10−2 m → volume V = L3
xyz 10.6·10−3 m3

→ sphere radius R = 3
√

3V/4π 13.7·10−2 m
→ piston radius Rp =

√
A/π 6.4·10−2 m → cap size α = 2arccos

(
1− A/2πR2

)
54◦

Table 1. Electro-acoustic characteristics of the loudspeaker cube with Visaton WS170S 4Ohm transducers.

3 CROSS-TALK AND VELOCITY CONTROL: ELECTROACOUSTIC MODEL
Compact spherical loudspeaker array literature [13, 9, 8, 4] describes radiation as caused and controlled by
the boundary condition that the housing and transducer velocities v j impose. Transducers are fed by voltages,
therefore directivity/radiation control seeks the driving voltages Ui able to synthesize transducer velocities v j
in a desired constellation. We complement the acoustic coupling from above with a complete electro-acoustic
model. As outlined in [4, 8], the transducer voltage corresponds to its current times impedance (static-coil
impedance Zc,i consists of inductance and resistance) plus the voltage induced by the transducer’s velocity (we
use s = iω)

Ui = Zc,i Ii +Uind,i, with Zc,i = Rc,i +Lc,is. (11)

Induction by velocity and the relation between current and force are described by the transduction constant Bli

Fi = Bli Ii, and Uind,i = Bli vi, (12)

and the force is proportional to the mechanical transducer impedance (Zm,i, mass, damping, and stiffness)

Fi = Zm,i vi +Fa,i, , with Zm,i = Mm,i s+Rm,i +Sm,is−1 (13)

plus the acoustic force Fa.i loading on the transducer, which couples the transducer velocities, see Eq. (4),

Fa,i =
L

∑
j=1

Za,i j v j. (14)

The exterior acoustic impedance is typically negligible and therefore disregarded. Altogether, we get a system
mapping the desired output velocities to the required input voltages

Ui = Zc,i Ii +Uind, i = Zc,i
Fi

Bli
+Bli vi = Zc,i Bl−1

i

(
Zm,ivi +∑

j
Za,i jv j

)
+Bli vi (15)

= ∑
j

[
Bliδi j +Zc,i Bl−1

i Zm,iδi j +Zc,i Bl−1
i

(
∑
lmn

Z(lmn)
a,i j

)]
v j.

Stacking velocities and voltages into vectors vvv = [v j], uuu = [Ui], and transduction factors into a matrix CCC =

[Bliδi j + Zc,i Bl−1
i Zm,iδi j + Zc,i Bl−1

i ∑lmn Z(lmn)
a,i j )]i j, we write the multiple-input-multiple-output system (MIMO)

compactly as uuu = CCC vvv. Of the acoustical Eq. (4), electrical Eq. (11), and mechanical impedances Eq. (13),
the cross-talk-cancelling, velocity-controlling MIMO system CCC only contains parallel combinations, i.e. causal,
parallel filters. Consequently, if all electro-acoustic components Rc,i, Lc,i s, (=Zc,i), Mm,i, Rm,i, Sm,i, (=Zm,i), Bli,
Za,i, α , R a, V , σlmn are identified, we get a well-defined control system delivering the voltages uuu required to
obtain the desired velocities vvv. It can directly be implemented, as is, by parallel, digital IIR filters.



4 EXPERIMENTAL STUDY: CUBOID AND SPHERE ARRAY
To inspect the coupling and electro-acoustic model, we consider a concrete example geometry based on an
IEM loudspeaker cube [6, 4]. It houses transducers at 0◦, 90◦, 180◦, −90◦ in azimuth at zero elevation. First
we inspect the coupling model assuming either a cube housing or an equivalent-volume sphere housing (with
equivalent-piston-area cap sizes). Tab 1 specifies the parameters.
Fig. 2 shows the frequency response of the force F1. The geometry and parameters are Lx = Ly = Lz = 23 cm
(cube), radius 14.3 cm (sphere), piston Rp = 6.4 cm, ρ = 1.2, c = 343, σlmn =

1+ωlmn/(2π300)
0.14 3ln10. Monopole

[vi] = [1,1,1,1], dipole [vi] = [1,0,−1,0] and quadrupole [vi] = [1,−1,1,−1] velocity patterns were inserted,
modes used up to 15 kHz and maximum indices of the simulated modes were N = 18. Regardless of the
cube or sphere enclosure: Between simplified sample-and-weight Eq. (5) (left) and proper piston/cap-integrals
Eq. (7)/(10) (right), differences are drastic: Bessel-function/sphere-cap factors attenuate higher-order modes and
reduce their long low-frequency skirts, which is more accurate if assuming piston/cap loudspeakers. At 0 Hz,
only the velocity monopole pattern is loaded by volume stiffness Z(000)

a,i j , therefore equivalent cube/sphere vol-
umes and equivalent piston/cap areas were chosen for easy comparison. The high-frequency amplitude drop for
the sphere enclosure stems from the limit kR < N at 6.3 kHz, i.e. N = 18 was chosen slightly too low.
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Figure 2. Frequency response in dB of the acoustic coupling force F1 at the first transducer of four (horizontally
every 90◦) of a loudspeaker cube (solid) or equivalent-volume sphere (dashed) for specific velocity patterns:
monopole (mon), dipole in x direction (dipx), or quadrupole (quad); the dotted response is the added force of
the mechanical load Zm Eq. (13) for transducers of Tab. 1. The left response considers a simplified sample-and-
weight solution, the right one uses proper Bessel-function/sphere-cap factors.

For the cube housing, we compare the electro-acoustic model with open Laser-Doppler vibrometry measure-
ments1 of the transducer velocities when driving every single input voltage of a multi-channel amplifier.
It is important to note that the measurements of the loudspeaker cube contains a 101 Hz, 3rd order Butterworth
high pass of the Laser vibrometer that was removed from the responses shown below. When transformed to the
DFT domain, the measurements describe the inverse control system at every frequency bin uuu = TTT vvv. This matrix
TTT−1 is inverted to obtain the control system CCCmeas at every frequency bin, which is comparable to the model
CCC. Figure 3 compares measurement and model in terms of the voltage frequency response of the first of the
loudspeaker cube’s input channels, when desiring different velocity patterns as in the simulation above.
The comparison is done either when using only the first mode at 0 Hz (left) or all the interior modes up to
15 kHz (right). It becomes clear that above 800 Hz, the required voltages drops considerably, when compared
to the model. Obviously the loudspeaker does not exhibit the mechanical-impedance related rise by Lc Mm s2/Bl,
cp. Fig. 2. This happens as the transducer cone does not move as a solid mass anymore, and 800 Hz appears to
be the modal break-up frequency of the cone. Above this frequency, precise modeling would be difficult, but is
also unimportant for beamforming that only requires precision below the spatial aliasing limit, i.e. f <746 kHz.

1http://phaidra.kug.ac.at/o:67626

http://phaidra.kug.ac.at/o:67626
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Figure 3. Model voltages of the loudspeaker cube array in dB over frequency, when the array is driven
in the velocity patterns [1,1,1,1] (monopole, mon), [1,0,−1,0] (dipole in x direction, dipx), or [1,−1,1,−1]
(quadrupole, quad), compared to the frequency-domain matrix-inverted velocity measurements from voltages.
left: acoustic crosstalk only considers 0 Hz compression mode, right: all the modes up to 15 kHz. Above
800 Hz the loudspeaker cone oscillates in partial vibrations.

Between 300 and 800 Hz, the required voltage is modeled sufficiently well by the acoustic system without
coupling. The mode at 746 Hz, see Fig. 2 (right), obviously does not have much influence (2dB on the dipole
response in measurement and model, between 600 Hz and 800 Hz). In this regard, the simple impedance
coupling of only the 0 Hz mode Eq. (6) without any further term is sufficient, as in [8, 4] and Fig 2 (left).
The remaining deviations between model and measurement below 200 Hz that amount to a couple of dB are
not explained well, however the model parameters from the technical specifications were not individually tuned.

5 CONCLUSION
This work demonstrated how to analytically model physical acoustic forces coupling multiple loudspeakers
whose back sides are connected via the common cuboidal Eq. (7) or spherical enclosure Eq. (10).
For most cases, a drastic simplification will be sufficient as in [8, eq.31]: the most relevant mode to consider
is the 0 Hz compression mode Eq. (6) of the air enclosed. It yields the known volume stiffness as impedance

Zi j =
iρ c2 AiA j

iω V of the acoustic coupling, to which the net of all surface-weighted loudspeaker velocities con-
tribute constructively/destructively. This is because at frequencies above the loudspeaker resonance frequency,
the transducer mass dominates the impedances, what makes coupling by higher modes negligible.
The full electro-acoustic model for frequencies below which the loudspeaker cone breaks up into partial vibra-
tions promises a full, causal, feed-forward IIR transducer velocity control, without the need for MIMO system
inversion. However it is assumed that transducer and enclosure parameters need to be identified accurately and
individually than given in the specificantions, when employed in superdirectional beamformers.
In addition to the electro-acoustic components requiring a third-order control system for every transducer, the
acoustic compression mode increases the system order by one and couples the transducers at low frequencies.
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A CUBOID PISTON INTEGRALS
Integrating ψlmn(xxx) over a disk, e.g., at z = 0, or z = Lz of the radius R and centered at x = a,y = b, we get
with scalars

√
(2−δl)(2−δm)(2−δn)

√
LxLyLz

−1 or (−1)n
√
(2−δl)(2−δm)(2−δn)

√
LxLyLz

−1 excluded

Irect,ϕ,r =
∫∫

D(R,a,b)
cos[ π

Lx
l x]cos[ π

Ly
my]dxdy =

∫ R

0

∫ 2π

0
cos[kx (r cosϕ−a)]cos[ky (r sinϕ−b)]dϕ rdr (16)

By cosα cosβ = cos(α+β )+cos(α−β )
2 the term cos[kx (r cosϕ−a)]cos[ky (r sinϕ−b)] becomes∫ R

0

∫ 2π

0

1
2 [cos(kxr cosϕ + kyr sinϕ− kxa− kyb)+ cos(kxr cosϕ− kyr sinϕ− kxa+ kyb)]dϕ rdr

where obviously we can gather the two sinusoids to one by Acosx+Bsinx =
√

A2 +B2 cos(x+ arctan B
A ) above,

and essentially reformulate both expressions to cos[C cos(x+D)+E] whose integral over x becomes∫ 2π

0

1
2 cos[C cos(x±D)+E±F ]dx = cos(E±F) 1

π
J0(A), (17)

and therefore in sum [cos(E +F)+ cos(E−F)] 1
π

J0(A) = cosE cosF 2
π

J0(A). The inner integral in Eq. (16) is

Irect,ϕ = cos( π

Lx
l a)cos( π

Ly
mb) 2

π
J0
(
r π

√
( l

Lx
)2 +( m

Ly
)2
)
, (18)



and is integrated
∫ R

0 r dr; DLMF says
∫ x

0 xJ0(x)dx = xJ1(x), so
∫ R

0 r J0(kr)dr = 1
k2

∫ kR
0 kr Jn(kr)dkr = R

k J1(kR),

Irect,ϕ,r =
∫ R

0
Irect,ϕ rdr = cos( π

Lx
l a)cos( π

Ly
mb)

2RJ1
(
Rπ

√
( l

Lx
)2 +( m

Ly
)2
)√

( l
Lx
)2 +( m

Ly
)2

. (19)

B SPHERICAL MODE NORMALIZATION AND SMALL CAP
Orthogonality of the spherical Bessel functions fulfilling the boundary conditions j′n(α) = j′n(β ) = 0 is typically
proven by inserting two different eigenvalues α,β , into the differential equation, and by integration over the
spherical Bessel function with the respective other eigenvalue, yielding a difference of both equations

α R j′n(α) jn(β )−β R jn(α) j′n(β ) =
−α2 +β 2

R2

∫ R

0
jn(α

R r) jn(
β

R r)r2 dr. (20)

Inserting α = klnR and β = kl′nR zeros the left side by the rigid condition j′n(klnR) = j′n(kl′nR) = 0. With
l 6= l′, the factor −α2+β 2 is non-zero so that the integral

∫ R
0 jn(α

R r) jn(
β

R r)r2 dr = 0 must be zero, verifying the
orthogonality of jn(klnr) and jn(kl′nr). The integral needn’t vanish for l = l′: its factor −α2 +β 2 = 0 vanishes.

We also need to know the missing normalization term Nln, which we find by multiplying Eq. (20) with R2

β 2−α2

and setting β = klnR, so that j′n(β ) = 0

1
N2

ln
= lim

α→β

∫ R

0
jn(α

R r) jn(
β

R r)r2 dr = lim
α→β

β jn(α) j′n(β )−α j′n(α) jn(β )
α2−β 2 R3∣∣

β=klnR = lim
α→β

−α j′n(α) jn(β )
α2−β 2 R3.

Letting α→ β , we get a 0
0 expression as limα→β j′n(α)= 0. We derive numerator and denominator (de l’Hopital)

with regard to α and get

1
N2

ln
= lim

α→β

[− j′n(α)−α j′′n(α)] jn(β )
2α

R3 = lim
α→β

[−α j′n(α)−α2 j′′n(α)] jn(β )
2α2 R3. (21)

The spherical Bessel differential equation helps simplifying −α2 j′′n(α) = 2α j′n(α)+ [α2−n(n+1)] jn(α)

1
N2

ln
= lim

α→β

{
α j′n(α)+ [α2−n(n+1)] jn(α)

}
jn(β )

2α2 R3 =
[β 2−n(n+1)] j2

n(β )

2β 2 R3 =

[
1− n(n+1)

β 2

]
j2
n(β )R

3

2
, (22)

which is verified by the indefinite integral
∫

jn(kr)r2dr = r3

2 [ j
2
n(kr)− jn−1(kr) jn+1(kr)] using jn−1 = j′n +

n+1
x jn

and jn+1 =− j′n− n
x jn, where for k = kln only − n(n+1)

x2 j2
n remains as j′n vanishes. The exceptional constant mode

β → 0 for n = 0 is not allowed above, but j0(0) = 1 makes it easily solved 1
N2

00
= j2

0(0)
∫ R

0 r2 dr = j20(0)R
3

3 , so that

N2
ln j2

n(klnR)R3 =

{
2 (klnR)2

(klnR)2−n(n+1) , unless kln = 0

3, for kln = 0, i.e. n = l = 0.
(23)

Small-cap approximation Using Pn(1) = 1 and P′n(1) =
n(n+1)

2 yields lim∆x→0 Pn(1−∆x) = 1− n(n+1)
2 ∆x with

∆x = 1− cos α

2 , here α denotes the aperture, to approximate the cap weights

an = 2π

∫ 1

cos α
2

Pn(x)dx =−2π
Pn+1(cos α

2 )−cos α
2 Pn(cos α

2 )
n = 2π

Pn−1(cos α
2 )−Pn+1(cos α

2 )
2n+1 , (24)

by lim
α→0

an = 2π
−(n−1)n∆x+(n+1)(n+2)∆x

2(2n+1)
= 2π

2(2n+1)
2(2n+1)

∆x = 2π (1− cos α

2 ). (25)
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