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Introduction
The decomposition of spatial sound scenes using spher-
ical microphone arrays is usually based on spherical
harmonics. However, the decomposition in spherical har-
monics requires a distribution of microphones covering
all directions, even if all sources are not all around. For
a restricted range of directions the spherical harmonics
can be orthogonalized, yielding the spherical Slepian
functions. These are well-suited to interpolate data on
a partial spherical domain. However, they introduce
large errors when extrapolating sound fields with sources
outside the restricted range. A different set of orthogonal
functions is obtained by solving the Helmholtz equation
with an angular boundary condition, e.g. a directional
range delimited by an infinite cone that acoustically
excludes sources outside. This article discusses the char-
acteristics of the corresponding spherical cap/segment
harmonics compared to the spherical harmonics and
Slepian functions applied to holographic sound field
extrapolation.

Modal sound field decomposition
The Helmholtz equation in spherical coordinates1 is
expressed by ∆p(rθ)− k2p(rθ) = 0, where ∆ is the
Laplace operator, p(rθ) is the sound pressure, and
k is the wave number. Modal sound field decom-
position including all directions is based on the so-
lution of the Helmholtz equation. The angular solu-
tions are usually combined and called spherical harmon-

ics Y m
n (θ) = N

|m|
n P

|m|
n (cosϑ)

{

cos(mϕ), for m ≥ 0

sin(mϕ), for m < 0

of order n and degree m; P
|m|
n denotes the associated

Legendre functions, and N
|m|
n is a scalar normalization

term.

A compact spherical microphone array captures the
sound pressure distribution on a spherical surface of
radius rM , which can be expressed by a spherical
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1Within this article, we define the position vector in
terms of spherical coordinates as r = r θ, whereby
r is the radial distance and θ is the direction vector
θ = [cos(ϕ) sin(ϑ), sin(ϕ) sin(ϑ), cos(ϑ)]T with ϕ and ϑ being the
azimuth and zenith angle, respectively.

harmonics expansion

p(rM ) =

∞∑

n=0

n∑

m=−n

Y m
n (θ)ψnm. (1)

The expansion coefficients are obtained by ψnm =
∫

S2
Y m
n (θ) p(rM )dθ, where S

2 denotes the unit sphere.

For reproduction, a surrounding spherical loudspeaker
array of radius rL is used to approximate the excitation
pattern f(θ) of the captured sound scene, cf. [1]. The
spherical harmonics expansion of this excitation pattern
is f(θ) =

∑∞
n=0

∑n

m=−n Y
m
n (θ)φnm.

For a microphone array located on a rigid sphere,
the coefficients of the excitation pattern and the pres-
sure distribution are connected by, cf. [2], ψnm =
−1
kr2

M

hn(krL)
h′
n(krM ) φnm. Omitting constant factors, this is

accurately approximated at the relevant frequencies as
rL is large by, cf. [3, Eq. 10.52.4],

ψnm =
−ine−ikrL

k2h′n(krM )
︸ ︷︷ ︸

wn(krM )

φnm. (2)

Up to a critical frequency, high order modes with n >

N do not contribute significantly in wn(krM ). Below
this frequency limit the pressure pattern captured by the
array is assumed as spatially band-limited, i.e.

p(rMθ) =
N∑

n=0

n∑

m=−n

Y m
n (θ)ψnm. (3)

Aliasing is comprehensively discussed in [4]. For simplic-
ity, absence of aliasing is assumed here

For notational convenience, the double sum in the
equation above is expressed by a vector product

p(rMθ) = y
T
N(θ)ψN. (4)

where yN(θ) := [Y m
n (θ)]q=1...(N+1)2 and

ψN := [ψm
n ]q=1...(N+1)2 with the linear index

q := n2 + n+m+ 1. Eq.(2) is expressed by

ψN = diag {wN(krM )}φN, (5)

withwN(krM ) = [w0(krM ), . . . ,

2N+1
︷ ︸︸ ︷

wN(krM ), . . . , wN(krM )]
and φN := [φmn ]q=1...(N+1)2 . The pressure pattern
expressed in terms of the excitation pattern yields

p(rMθ) = y
T
N(θ) diag {wN(krM )}φN. (6)
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Figure 1: Magnitude response of w−1

n (krM ) for n = 0 . . . 6.

(a) (b)

Figure 2: Possible shapes S2
⊂ S

2 for a restriction in ϑ:
(a) spherical cap where ϑ ≤ ϑ1, and (b), and (b) spherical
segment where ϑ1 ≤ ϑ ≤ ϑ2.

Inverting Eq.(5), the coefficients of the excitation pattern
can be calculated from the coefficients of the pressure
distribution captured by the array:

φN = diag {wN(krM )}
−1
ψN. (7)

The magnitude responses of w−1
n (krM ) for n = 0 . . . 6

are depicted in Fig.1.

We are interested in holographic extrapolation for a
limited range of directions, especially in a method
requiring the same fraction as the surface on which
the sound pressure is captured. Let S2 ⊂ S

2 denote
fractions of the unit sphere delimited only in the zenith
angle ϑ. Fig.2 illustrated the two possible shapes, (a)
a spherical cap where ϑ ≤ ϑ1, and (b) a spherical
segment where ϑ1 ≤ ϑ ≤ ϑ2. The discussion below
focuses on two suitable types of orthogonal bases for such
fraction and their application to holographic sound field
extrapolation.

Spherical Slepian functions
The spherical Slepian functions, cf. [5], form an orthog-
onal basis for both, the entire sphere and the restricted
directional range. The Slepian functions vN span the
same function space as the spherical harmonics and they
are related by a transformation matrix U

vN(θ) = U
TyN(θ); (8)

whereby U contains the eigenvectors of G, cf. [5], the
Gram-matrix G of the spherical harmonics up to order

Figure 3: Spherical Slepian functions for a spherical segment
with ϑ1 = 60◦, ϑ2 = 120◦, spatially band-limited with n ≤ 6,
and a threshold σ = 0.9.

n < N on S2

G =

∫

S2⊂S2

yN(θ)y
T
N(θ) dθ = UΣUT. (9)

where Σ = diag
{
[σi]1...(N+1)2

}
contains the eigenvalues

σ1 < . . . < σ(N+1)2 . On a rotationally symmetric region,
the spherical Slepian functions can be determined for
each degree m individually.

In contrast to the spherical harmonics, the Slepian
functions exhibit an angular energy concentration.
Taking a subset of the spherical Slepian functions
ṽN(θ) = [vi(θ)]i=1...M, M < (N + 1)2, yields the
subspace of band limited functions exhibiting energy
concentration in the region of interest. The energy
concentration is adjusted by a threshold σ such that

σi

max(σi)
> σ. For this subset Eq.(8) reduces to

ṽN(θ) = Ũ
TyN(θ). (10)

where Ũ is the (N + 1)2 ×M part of the transformation
matrix, U = [Ũ , Ũ⊥]. The spherical Slepian functions
for a spherical segment up to order N = 6 are depicted
in Fig.3.

Decomposing the captured pressure pattern on S2 terms
of this subset of spherical Slepian functions yields

ψ̃N = Σ̃−1

∫

S2⊂S2

ṽN(θ) p(rMθ) dθ, (11)

whereby Σ̃ = diag {[σi]1...M}. The decomposition is
numerically stable by choosing σ sufficiently large.

Inserting Eq.(10) in the above equation and expressing
the sound pressure pattern in terms of the excitation
pattern, cf. Eq.(6), yields

ψ̃N = Σ̃−1ŨT

∫

S2⊂S2

yN(θ)y
T
N(θ)dθ diag {wN(krM )}φN.

Inserting the eigendecomposition of Eq.(9) yields

ψ̃N = Σ̃−1ŨT U ΣUT
︸ ︷︷ ︸

ŨT

diag {wN(krM )}φN, (12)

whereby the simplification results from the orthogonality
of U , i.e. ŨT U =

[
IM×M 0M×(N+1)2−M

]
. If we assume

that the excitation pattern is suitably angularly limited
by the condition ŨT

⊥φN = 0, the excitation can be

expressed by φN = Ũ φ̃N; and the propagation relation
for the spherical Slepian functions yields

ψ̃N = ŨT diag {wN(krM )} Ũ φ̃N. (13)
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Figure 4: Magnitude response of w̃i,j(krM ) for n ≤ 6; the
corresponding basis functions are depicted in Fig.3
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Figure 5: Energy of the error in the excitation pattern
φ̃N,err, cf. Eq.(15) , for a plane wave impinging from ϑs

for an array located on a spherical segment with ϑ1 = 60◦,
ϑ2 = 120◦

The inverse yields the coefficients of the excitation
pattern φ̃N from the coefficients of the pressure ψ̃:

φ̃N =
[

ŨT diag {wN(krM )} Ũ
]−1

︸ ︷︷ ︸

:=W̃=[w̃i,j(krM )]M×M

ψ̃N. (14)

In contrast to capture on the full sphere, cf. Eq.(7),
partial capture and holography requires a frequency
dependent matrix inversion when using spherical Slepian
functions.

Fig.4 depicts the magnitude response of w̃i,j(krM ), cf.
Eq.(14) for Slepian functions on a spherical segment, n ≤
N, cf. Fig.3.

An error occurs if the excitation pattern is not fulfilling
the condition ŨT

⊥φN 6= 0. Such patterns cause
sound pressure patterns captured on S2, which are
misinterpreted. By subtracting2 Eq.(12) from Eq.(13),
ψ̃N,err = ŨT diag {wN(krM )} Ũ⊥Ũ

T
⊥φN and inserting

into Eq.(14) defines the erroneous contribution to φ̃N

φ̃N,err = W̃ ŨT diag {wN(krM )} Ũ⊥Ũ
T
⊥φN. (15)

Fig.5 shows the energy of φ̃N,err for a plane wave in
dependence of its zenith angle of incidence ϑs on an array
located on a spherical segment with ϑ1 = 60◦, ϑ2 = 120◦.

Spherical cap/segment harmonics
Imposing sound-hard boundary conditions in ϑ on the
Helmholtz equation restricts the limited range of direc-
tions S2 ⊂ S

2 to a spherical cap, cf. [6], or segment and
yields an orthogonal and complete basis on S2.

2Note that I − ŨŨT = Ũ⊥ŨT

⊥
.
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Figure 6: (a) semi-infinite cone and (b) infinite double cone.

The angular solutions of the Helmholtz equation fulfilling
such a boundary condition are the spherical cap/segment
harmonics

Y m
νl(m)(θ) = N

|m|
νl(m) P

|m|
νl(m)(cosϑ)

{

sin(mϕ), for m < 0,

cos(mϕ), for m > 0,

(16)

where P
|m|
νl(m) = P

|m|
νl(m) +αl(m)Q

|m|
νl(m); P

m
ν , Q

m
ν are the

associated Legendre functions of non-integer order ν and
α is a scalar weight depending on the type of boundary
condition. An algorithm for computing the associated
Legendre functions of non-integer order is given in [7].

Semi-infinite cone. A semi-infinite conical scatterer,
cf. Fig.6(a), corresponds to the boundary condition
∂p(rθ)

∂ϑ

∣
∣
∣
ϑ=ϑ1

= 0. As this condition concerns only ϑ it

reduces to

∂ P
|m|

νl(m)
(cosϑ)

∂ϑ

∣
∣
∣
∣
ϑ=ϑ1

= 0. (17)

There is an infinite but discrete set of parameters νl(m)
and αl(m), l = 1 . . .∞, for which the boundary condition
is fulfilled. Restricting the functions to be finite in S2,
requires αl(m) to be zero as |Qm

ν (cosϑ)| → ∞ for ϑ→ 0.

The zeros of f(ν) =
∂ P

|m|
ν (cosϑ1)

∂ϑ
determine the values

of νl(m). For this purpose a numerical zero-finding
algorithm is used, e.g. MATLAB’s fzero (derivatives of
Legendre functions can be evaluated using one of their
recurrence relations, cf. [3, Eq. 14.10.5]).

Infinite double cone. Similarly, an infinite dou-
ble conical scatterer, cf. Fig.6(b), corresponds to the

boundary conditions
∂ P

|m|

νl(m)
(cosϑ)

∂ϑ

∣
∣
∣
∣
ϑ=ϑ1,2

= 0, which is

equivalent to

[
∂ P

|m|

νl(m)
(cosϑ)

∂ϑ
+ αl(m)

∂ Q
|m|

νl(m)
(cosϑ)

∂ϑ

]

ϑ=ϑ1,2

= 0. (18)

By evaluating at both boundaries α can be elimi-
nated. The zeros of the remaining expression f(ν) =



Figure 7: Spherical segment harmonics for a double conical
boundary condition θ1 = 60◦, θ2 = 120◦, and spatially band-
limited with νq ≤ 6.

∂ P
|m|
ν (cosϑ1)

∂ϑ

∂ Q
|m|
ν (cosϑ2)

∂ϑ
−

∂ P
|m|
ν (cosϑ2)

∂ϑ

∂ Q
|m|
ν (cosϑ1)

∂ϑ
deter-

mine the values of νl(m). Based on νl(m) the values of
αl(m) are determined by Eq.(18).

The spherical segment harmonics for a double cone with
ϑ1 = 60◦, ϑ2 = 120◦, up to order N = 6 are depicted in
Fig.7.

Modal sound field decomposition. On spherical
cap/segment S2 ⊂ S

2 restricted by the boundary, the
spherical cap/segment harmonics are orthonormal,
∫

S2⊂S2
Y m′

ν′
l
(m′)(θ)Y

m
νl(m)(θ) dθ = δll′δmm′ , and complete,

∫

S2⊂S2
[f(θ) −

∑∞
l=0

∑l

m=−l Y
m
νl(m)(θ) φ̂lm]2dθ = 0,

where φ̂lm =
∫

S2⊂S2
f(θ)Y m

νl(m)(θ) dθ are the expansion
coefficients.

For notational convenience, we introduce the linear index
q ∈ 1 . . .Q and νq = νl(m) with ν1 < ν2 < . . . < νQ ≤ N
and mq, ψq are the associated degrees and expansion
coefficients . This allows to express the spatially band
limited pressure pattern by

p(rMθ) = ŷ
T
N(θ)ψ̂N, (19)

where ŷN(θ) := [Y 0
ν1
(θ), . . . , Y

mQ
νQ (θ)], and

ψ̂N := [ψ̂1, . . . , ψ̂Q]. The spherical cap/segment
harmonics expansion of the corresponding excitation
pattern yields

f(θ) = ŷTN(θ)φ̂N, (20)

where φ̂N := [φ̂1, . . . , φ̂Q].

An array capturing the spherical cap/segment spectrum
of the sound pressure at the radius rM receives

ψ̂N = diag {ŵN(krM )} φ̂N, (21)

with ŵN(krM ) = [ŵ0(krM ), . . . , ŵQ(krM )] and

ŵq(krM ) =
−iνqe−ikrL

k2h′νq (krM )
. (22)

The radial propagation terms in the above equation
are similar to the spherical case, Eq.(5), with the
only difference of a non-integer parameter νq. As the
propagation terms behave similarly, the spatial band-
limitation is motivated by the same reason as for the
spherical case.

The coefficients of the excitation pattern can be calcu-
lated from ψ̂N by inverting Eq.(21),

φ̂N = diag {ŵN(krM )}
−1
ψ̂N. (23)
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Figure 8: Magnitude response of w−1

q (krM ) for νq ≤ 6; the
corresponding basis functions are depicted in Fig.7

Comparing the above equation with Eq.(7), reveals that
the expressions are structurally identical. However band
limitation has different consequences in the spherical
cap/segment harmonics than in he spherical harmonics.
Fig.8 depicts the magnitude responses of w−1

q (k) for a
double conical boundary and νq ≤ 6.

Conclusion and prospects
Modal sound field decomposition and holographic ex-
trapolation are applicable to both, spherical Slepian
functions and spherical cap/segment harmonics. How-
ever, extrapolating spherical Slepian functions requires a
frequency dependent matrix inversion and provokes large
errors when sources are located outside the directional
range of interest. In contrast, extrapolating spheri-
cal cap/segment harmonics is structurally identical to
spherical harmonics. Theoretically, the physical bound-
ary excludes sources outside. Extrapolating spherical
cap/segment harmonics using conical boundaries of finite
extent will be investigated in future work.
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