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Abstract
Spatial audio productions for circular or spherical surround playback facilities often use Ambisonics because of the
smoothness it offers for panning and because of its classical and new main microphone array technology. In contrast
to channel-based standards in surround sound, Ambisonics ideally offers flexibility regarding the loudspeaker setup
around the listening area. Well-designed decoders should yield a spatial perspective that is largely independent of
this setup. With the increasing availability of microphones capable of recording higher order Ambisonics, various
transformations in the Ambisonic domain are desirable and necessary for enhancements during post production and
playback. Alteration of source positions or their loudness levels can easily be done by transformations applied in the
angular domain, of which a naive but impractical realisation would be to set up the playback loudspeakers differently
than those specified in the decoder. Fortunately, corresponding transformations can always be performed as matrix
operation in the Ambisonic signal domain, which, however, is currently not described well. In particular, such
alterations are only well-described for first-order Ambisonics, while we lack systematic descriptions for the higher
Ambisonic orders. This work presents ready-to-use implementations for the warping of the recording perspective and
directional loudness modification of higher-order Ambisonics. What is more, Ambisonic mastering has only been
done by ear in the past, wherefore this paper introduces a metering tool for monitoring the directional loudness levels
of Ambisonic recordings.

1. Introduction
Time and frequency independent spatial transformations of
Ambisonic recordings can be achieved by a simple matrix
multiplication of the Ambisonic signals. Finding suitable
transformation matrices for the post production of Ambisonic
recordings is the goal of this article. Based on the ”dominance
effect” proposed by Gerzon [1] for adjusting the front-back
balance Zotter and Pomberger [2][3] presented Warping of
Higher Order Ambisonics for correcting the surround image.
While deriving analytic expressions for the matrix coefficients
can be challenging a straight forward numerical approach
of finding the transformation matrix is mentioned in [3].
Ambisonic transformation matrices have also been studied by
Chapman and Cotterell [4], however their article concludes
with the erroneous speculation that the dominance transform
only exists for fist order Ambisonics. By contrast, there are
simple ways to describe any Ambisonic transformation.

This paper describes the simplest way to describe any Am-
bisonic transformation by performing all manipulation in the
angular domain instead of the spherical harmonics domain.
For a practical implementation, the Ambisonic signals are
sampled at sufficiently many discrete points in the angular
domain, where the location of the sampling points or their
values are manipulated. Re-expansion of the manipulated
angular samples back into the spherical harmonics domain
yields the Ambisonic transformation matrix.

The presented manipulations are implemented in the ambiX

audio plug-in suite [5] which can be downloaded at the
authors website1.

1http://matthiaskronlachner.com

2. Ambisonics
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Figure 1: Cartesian and spherical coordinate system
We define our coordinate system as following (cf. Fig. 1): the
x-axis points to the front, the y-axis to the left and the z-axis
to the top of the listener. Within Ambisonics we mostly deal
with spherical coordinates whereby ϕ is the azimuthal angle
in mathematical positive orientation (counter-clockwise)2 and
ϑ being the elevation angle with 0◦ pointing to the equator and
+90◦ pointing to the north pole.

To denote the directional dependency of the surround signal
represented by Ambisonics, we will often need to convert
between a Cartesian unit direction vector

θ =

θxθy
θz

 =

cosϕ cosϑ
sinϕ cosϑ

sinϑ

 (1)

and the azimuth and elevation angles (ϕ, ϑ) of the spherical
coordinates

ϕ = arctan
θy
θx
, ϑ = arctan

θz√
θ2x + θ2y

. (2)

2The user interface of the software differs from this angle convention and
uses a clockwise azimuth.
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Ambisonics uses a spherical harmonic expansion up to order
N to represent a surround audio signal f(ϕ, ϑ, t)

f(ϕ, ϑ, t) =

N∑
n=0

n∑
m=−n

Y mn (ϕ, ϑ) φnm(t) (3)

whereby Y mn being the spherical harmonics of order n,
degree3 m (Fig. 2) and φnm(t) the expansion coefficients.

Although not essential for the transformations in this paper it
should be mentioned here that variations about the sequence
and normalization of the spherical harmonics yield to difficul-
ties in exchanging Ambisonic recordings or using Ambisonics
software from different authors. Spherical harmonics consist
of a normalization term N

|m|
n , the associated Legendre func-

tion P |m|n and the trigonometric function,

Y mn (ϕ, ϑ) = N |m|n P |m|n (sin(ϑ))

{
sin |m|ϕ, for m < 0

cos |m|ϕ, for m ≥ 0.

(4)

The software associated with this publication complies to
the ambiX [6] convention, therefore the Ambisonic Channel
Numbering (ACN) Eq. (5) and SN3D normalization Eq. (6)

are used. However the factor
√

1
4π in the definition of N |m|n

from [6] resulting in a reduction of the signal by ' 11dB is
neglected

ACN = n2 + n+m, (5)

N |m|n =

√
(2− δm)

(n− |m|)!
(n+ |m|)!

. (6)

Using this index neatly defines a sequence for the spherical
harmonics Y mn (ϕ, ϑ) = YACN (ϕ, ϑ) and the Ambisonic
signals φACN (t) to stack them in a vector

y(θ) =

 Y0(θ)
...

Y(N+1)2−1(θ)

 , φ(t) =

 φ0(t)
...

φ(N+1)2−1(t)

 .

(7)

The angular dependency above is symbolically condensed by
using the unit Cartesian direction vector θ instead of (ϕ, ϑ).
In the vector notation, surround signals as in Eq. (3) are
conveniently written as

f(θ, t) = yT(θ) φ(t). (8)

Many publications use cos(ϑ) as argument of P |m|n which
complies with the standard definition of the spherical coor-
dinates, in which ϑ is not an elevation, but a zenith angle that
is zero at the zenith and not at the horizon. This, however, was
considered to be counter-intuitive in the musical application.
Further [7] does not use the absolute value |m| in the argument
of the trigonometric functions yielding to a sign inversion of
all Y mn withm < 0 which results in mirroring the y-axis4 (see
2.1).

3some publications use the term order and degree in the opposite way
4this convention is also used in the Pure Data object

mtx spherical harmonics

As there are different conventions in channel ordering, nor-
malization, and sign inversion, the plug-in ambix converter

allows to convert between the different conventions on the fly.

Figure 2: Spherical harmonics up to 3rd order with Ambisonic
Channel Numbering, order n and degree m

2.1. Transformations through symmetry consid-
erations

For mirroring our Ambisonic signal φ(t) about the coordinate
system axes we can use the symmetry properties of the
spherical harmonics [8]. These transformations can be applied
with the ambix mirror plug-in.

From the ACN index we get the order n with

n = floor(
√
ACN), (9)

and the degree m with

m = ACN − n2 − n. (10)

We can mirror the y-axis (flip) by inverting all φ(t) with
m < 0 and therefore exchange the left and the right side
of the surround image. The x-axis is mirrored (flop) by
inverting all φ(t) with ((m < 0) AND (m even) OR (m ≥
0) AND (m odd)) and exchange front and back. Mirroring
the z-axis (flap) results in exchanging the top and bottom and
can be realized by inverting all φ(t) where l + m is an odd
number.

3. Transformations in the spatial do-
main

We are interested in finding the matrix T which expresses that
the Ambisonic signals φ(t) underwent spatial manipulation
(e.g. mastering) to obtain modified Ambisonic signals φ̃(t)

φ̃(t) = T φ(t). (11)

To get such a matrix, we first consider relevant useful
changes in the spatial domain. Desirable transformations
of the surround signal are (1) weighting by a direction-
dependent gain that helps to emphasize/attenuate signals
form wanted/unwanted directions (2) angular transformations
to modify the panorama of sounds in the surround signal.
A surround signal f(θ, t) in which each direction is
weighted by g(θ) and mapped to another direction T {θ}
in the new surround signal f̃(θ, t) would be written as
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f̃(T {θ}, t) = g(θ) f(θ, t). An invertible directional
mapping T −1{·} will simplify things later, therefore we use

f̃(θ, t) = g(θ) f(T −1{θ}, t) (12)

to search the corresponding matrix T . To do so we insert
Eq. (8) for g(θ)f(θ, t) and f̃(T {θ}, t)

yT(θ) φ̃(t) = g(θ)yT(T −1{θ}) φ(t). (13)

To remove yT(θ), we utilize the orthogonality of the spherical
harmonics

∫
S2 y(θ)y

T(θ) dθ = diag{a} to get:

φ̃(t) = diag{a}−1
∫
S2
y(θ) g(θ)yT(T −1{θ}) dθ︸ ︷︷ ︸

:=T

φ(t),

with a =
[

4π
2nACN+1

]
ACN

. (14)

Numerical calculation of the hereby obtained transformation
is found by expressing the integral over θ in a discretized
fashion. We recognize it as a spherical harmonics transform
over the expression T = SHT {g(θ)yT(T −1{θ})}.

3.1. Discrete spherical harmonics transform
In order to implement the spherical harmonics transform of
g(θ)yT(T −1{θ}), Eq. (14), the most convenient is to sample
the transformation integral by a suitable distribution of, say L,
directions

Θ = [θ1, . . . , θL]
T (15)

on the sphere and to perform a discrete spherical harmonics
transform T = DSHT {diag{g(Θ)}Y (T −1{Θ})}. A
discussion of different sampling strategies, their aliasing char-
acteristics and transform properties can be found in [7] and
[9].

In general, DSHT requires to discretize the (N + 1)2 spher-
ical harmonics y(θ) by the L ≥ (N + 1)2 directions and
to write the result into a L × (N + 1)2 matrix, as well as
discretization of g(θ) to the L× 1 vector g(Θ)

Y (Θ) = [y(θ1), . . . , y(θL)]
T, (16)

g(Θ) = [g(θ1), . . . , g(θL)]
T. (17)

The right-inverse Y † = (Y TY )−1Y T achieves DSHT ,
which yields in our application:

T = DSHT
{
diag{g(Θ)}Y (T −1{Θ})

}
(18)

= Y †(Θ) diag{g(Θ)}Y (T −1{Θ}).

T is constant as long as the angular transformation T {Θ} and
the weighting function g(Θ) are not changing, which, how-
ever, might be necessary in applications with time-varying
curves.

Note that angle-distorting or directional-loudness-weighting
manipulation often requires φ̃(t) to be of higher orders than
the original Ambisonic signals φ(t), which is not explicitly
spelled out here, but can exemplarily be found in [2, Tab.1].

θC

γ c

2

g 1 g 2

Figure 3: Spherical cap with center θC , size γc
2

, gain factor g1 inside
the cap and g2 outside the cap.

t-designs: To achieve a low computational effort, a small
number of sampling points would be beneficial. However, the
number of sampling points must at least be L ≥ (N + 1)2.
Moreover, the condition number of Y needs to be sufficiently
small to avoid numerical errors. The most pragmatic choice
of sampling was presented by Hardin and Sloane [10], who
provide coordinates Θt for various spherical t-designs. For
a transform of the Ambisonic order N, we would need a
t-design of t ≥ 2N. The maximum currently available
21-design with 240 points allows the use up to Ambisonic
order N = 10, and it allows a DSHT without any pseudo-
inversion:

T = diag{b}Y T(Θt) diag{g(Θt)}Y (T −1{Θt}),
with b =

[
2nACN+1

L

]
ACN

. (19)

Due to its practical advantage, all subsequent transformations
use the above Eq. (19).

3.2. Directional loudness modifications
Modifying the loudness of specific directions is
especially useful for post production of microphone
array recording and is implemented in the plug-in
ambix directional loudness. Svensson et al. [11]
is using a modified set of basis functions to suppress signals
from specified directions.

To performing loudness modifications in the angular domain,
we consider a cap function to crop out a part of the surround
sound scene (Fig. 3). For this purpose, we use Eq. (19) with
neutral directional mapping T {θ} = θ and a gain function
g(θ) that corresponds to a cap of unity amplitude of the size
γc
2 around our center of the cap θc, and to zero elsewhere:

g(θ) = u(θTc θ − cos γc2 ), (20)

with u(·) representing the unit step function. Other, more
rounded functions will help keeping the order small, but will
not be discussed here for simplicity. In practice, another gain
function might be valuable that allows to determine gains for
both the region within and outside the spherical cap with g1
and g2, respectively,

g(θ) = g1 u(θ
T
c θ − cos γc2 ) + g2 u(cos

γc
2 − θ

T
c θ). (21)

3.3. Rotation in three dimensions
Rotations of spherical harmonics around the z-axis are fairly
easy to implement. More challenging is the rotation around
the x- and y-axis which can be realized as combination of
fixed 90◦ rotations around the y-axis and variable rotations
around the z-axis [7]. To avoid the derivations in the spherical
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Figure 4: Rotation around x, y and z-axis.

harmonic domain we can perform the rotation in the angular
domain. The rotation of the unit Cartesian direction vector θ
around the x axis (φ, roll), y axis (θ, pitch) and z axis (ψ, yaw)
is done by multiplication with the rotation matrix R(φ, θ, ψ)

θ̃ = T {θ} = R(φ, θ, ψ) θ, (22)

where

R(φ, θ, ψ) =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ


︸ ︷︷ ︸
x−axis−rotation(roll)

·

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


︸ ︷︷ ︸
y−axis−rotation(pitch)

·

cosψ − sinψ 0
sinψ cosψ 0
0 0 1


︸ ︷︷ ︸
z−axis−rotation(yaw)

. (23)

The inverse transformation required to obtain T with Eq. (19)
just uses the transposed matrix T −1{·} = RT(φ, θ, ψ) · {}
and a neutral weight g(θ) = 1. Rotation does not increase the
Ambisonic order.

3.4. Warping
Warping is used to stretch a certain region of the surround im-
age while squeezing it in other regions to prevent overlap. In
this paper we describe the warping operation for the elevation
angle ϑ to ϑ̃. Warping along any other direction can be done
by pre- and post-rotation. Zotter and Pomberger [3] mention
the necessity for a magnitude emphasis as correction for the
enlargement of sources after applying warping. Therefore,
other than rotation and directional loudness manipulation, non
of both modifiers g(θ) and T {·} will be neutral in Eq. (19).

We are using a substitution to simplify subsequent warping
curves, cf. [3], in order to express the manipulation of the
angle ϑ in Eq. (2),

µ = sin(ϑ), original, (24)

µ̃ = sin(ϑ̃), warped,

and we restrict ourselves to monotonically rising warping
curves ∂µ̃

∂µ ≥ 0 that map µ of the interval [−1, 1] to µ̃

covering the interval [−1, 1]. To apply this manipulation on
θ, the determination and modification of its angles ϕ and ϑ as
defined in Eqs. (1) and (5) are required.

Warping to elevate or lower equator. As proposed by
Gerzon and in [2], a bilinear transform provides a useful
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Figure 5: Warping of the elevation angle

warping transformation between µ and µ̃

µ̃ =
µ+ α

1 + αµ
. (25)

The operation is neutral for α = 0, and depending on the sign
of α, it elevates or lowers the equator ϑ = 0 of the original
surround image to ϑ̃ = arcsinα for any α between −1 ≤
α ≤ 1 (Fig. 5(a)). To preserve the total loudness of sounds
within the stretched and squeezed parts of the surround sound

images, the gain weight g =
√

∂µ̃
∂µ needs to be applied after

warping as post-emphasis, cf. [3],

g(µ) =

√
1− α2

1 + αµ
. (26)

Warping towards and away from equator. The following
equation is another useful warping curve preserving the ele-
vation of the equator. It is neutral for β = 0, pushes surround
sound content away from the equator to the poles for β > 0,
or pulls it towards the equator β < 0 (Fig. 5(b)),

µ̃ =

 (|β|−1)+
√

(|β|−1)2+4|β|µ2

2|β|µ , for β > 0,
(1−|β|)µ
1−|β|µ2 , for β < 0.

(27)

The gain post-emphasis g =
√

∂µ̃
∂µ is

g(µ) =

(
1− |β|µ2√

(1− |β|)(1 + |β|µ2)

)sgn{β}

. (28)

The exponent denotes that for negative β post-emphasis uses
the reciprocal value of the expression in brackets.

Figure 6: Warping scheme, thin lines indicates unmodified surround
image, warping towards the northpole α = 0.4 and warping away
from equator β = 0.4
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Figure 7: Ambisonic directional loudness meter

4. Metering Ambisonic signals
To support the verification process of the described Ambisonic
manipulations a visual feedback of the directional loudness
level is presented. The process of generating the visual
surround image is divided in three parts, one operating in
audio rate, one in control rate which defines the display frame
rate and the final drawing part which is done on the graphics
card (Fig. 7). The Ambisonic signal φ(t) is sampled with
the t-design spherical harmonic matrix Y T (Θ) resulting in
L directional audio signals f(Θ, t). The rms and peak value
of those L signals are measured with adjustable release time.
Filtering may be applied before the rms/peak detectors to have
a frequency selective display. The rms/peak detectors output
their logarithmic measurements in the final display frame rate.
These 2L values get re-encoded into the spherical harmonics
domain with the same t-design used before. A texture with
a resolution of v vertical and h horizontal pixel is used to
display the directional rms value. The color of the P = hv
pixel is determined by sampling the rms spherical harmonic
vector using a subdivision of h for the azimuth and v for the
elevation. Afterwards this texture is mapped onto a sphere.
The peak values are sampled in lower resolution and displayed
as small spheres located as grid on the surface of the sphere.
Additionally to the 3D view of the sphere the Mollweide
projection is used to map the whole surround image on a 2D
image.

The prototype visualisation has been developed using Pure
Data. To reduce the CPU load it might be feasible to move
all processing to the graphic card which is usually not busy
with audio applications.

5. Conclusion
A pragmatic approach for calculating Ambisonic transfor-
mation matrices has been presented. These transformations
can be used to attenuate or boost certain directions in Am-
bisonic recordings, to rotate, and to warp the spatial image
in certain directions. The algorithms have been implemented
as ready-to-use audio plug-ins applicable to production and
postproduction of Ambisonic recordings. Additionally the
transformations can be used to adapt Ambisonic recordings
to certain playback situations. For all that, a new way of
metering the Ambisonic surround production is required and
was successfully presented.
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