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Equalization is a crucial tool contributing to high audio quality for playback loudspeakers in their
acoustic environment. In our work, we implement a method to automatically calculate filter coefficients
to flatten the loudspeaker’s frequency response over an averaged listening area. Different spectral
resolutions and filter designs are evaluated by using the prototype implementation. The parallel filters
impress with the low latency and consistent spectral discretization. The minimum-phase finite impulse
response (FIR) filter benefits from an even better resolution at high frequencies; the higher latency
does not enable real-time applications. Similar to the FIR filter, the main disadvantages of linear-
phase FIR filters are high latency and lower linear frequency resolution. Due to its symmetry, an
unwanted pre-ringing effect can also occur. An acoustical measurement of an example loudspeaker in
a room verifies the functionality of the designed filters.
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1 Introduction

”
The word equalization suggests a process of making things equal,

and it is fair to ask what, for whom, and why?“

Floyd E. Toole

1.1 Motivation

As this piece of literature provides an interesting introduction to young professionals, we quote F.
Toole’s question above from the book [Too09] in which it is discussed several aspects: the influence
of loudspeakers [chp. 17 & 18], their surrounding acoustical environment [chp. 16], and in terms of
the resulting human auditory perception [chp. 19]. In [chp. 22], equalization strategies for improved
sound reproduction in space are summarized.

The question of what target frequency response should be aimed for a loudspeaker is presented in ISO
2969:2015, widely known as X-Curves. This standard contains the typical electroacoustic frequency
response for motion-picture dubbing theatres (mixing rooms), screening rooms, and indoor theatres.
The X-Curves are distinguished by constantly perceived loudness over the frequency [ISO15], often
called flat frequency response. These targets might be helpful, especially for reference listening rooms,
while different approaches could be more meaningful for other applications.

Parametric filters are commonly employed to flatten arbitrary frequency response to match a de-
sired target frequency response. Parametric filters (peak or shelf) typically shapes certain frequency
bands without touching other frequency bands. Equalizers often use a set of four to six of such serially
connected first and second-order shelving and peak filters. Shelving filters enhance or attenuate low
or high-frequency bands, whereas peak filters are used to enhance or attenuate mid-frequency bands
[Zö11]. They offer simple implementations but are also limited in terms of number of bands and ad-
justability. By increasing the set of parametric filters, the control detail increased, but also nonlinear
phase or unequal group delay effects can become audible.

Solutions like Sonaworks 1 - speakers and headphones calibration - as well as smart:EQ 3 from Sonible,
2 which establishes spectral balance, are commercial products, and their principle of operation are not
known. As far as the software allows linear-phase FIR filters, a standard n-tap FIR is suspected. The
main disadvantage is having a relatively long filter for acceptable frequency resolution, which results
in a long delay during convolution.

The filters considered in the implementation of this work are designeed based on third-octave smoothed
responses and implemented either as linear-phase filters, minimum-phase filters (both FIR), or the
main approach considered here: parallel second-order IIR filters after Balázs Bank [Ban08]. Compared
to serially connected IIR filters, parallel filters benefit from fewer multiplications and significantly less
delay.

1www.sonaworks.com
2www.sonible.com/smarteq3
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1.2 Structure of this Work

The first section gives an overview of the theory of the equalization scheme employed. Furthermore,
the theoretical fundamentals are described in detail, such as sweep calculation, room impulse response
(RIR) measurements, averaging of the RIR, coefficient calculation for pole filters with given band-
width, calculation for center frequencies for the parallel filter bank. The implementation of parallel
filter, linear-phase FIR filter, minimum-phase FIR filter, and mixed-phase FIR filter is presented in
the second section. The third section shows several filter results of the implemented loudspeaker
equalization tool and their performance in the field. The fourth section gives a conclusion and an
outlook of this work.
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2 Measurement and Post-Processing

2.1 System Identification

Any electrical or acoustical time-invariant system can be determined by its answer of excitation with
a Dirac unit pulse δ[n]. This answer is called the impulse response (IR). Therefore, measuring IRs is
a common task in audio signal processing. As far as a perfect Dirac unit pulse can not be perfectly
reproduced with a loudspeaker, in the current work, the exponential sweep (ES) is used as an excitation
signal due to several advantages. The ES is gainful because of its low crest factor and the possibility
of suppressing any harmonic distortion. [MBL07].

2.1.1 Impulse Response

In order to measure the IR of any linear time-invariant system, an excitation signal x[n] is generated
in such a way that the signal xinv[n] can be easily determined by inverting the signal. According to
[HCZ09], convolution of the inverted signal and the signal itself leads to a potentially scaled by a
factor C and time-shifted unit pulse δ[n0 − n], such that

N−1∑
l=0

x[l]xinv[n− l] = C δ[n0 − n] . (2.1)

Thus, the convolution of the measured signal y[n] and the inverse excitation signal will give the scaled
and time-shifted impulse response h[n]

C h[n0 − n] =
N−1∑
l=0

y[l]xinv[n− l] . (2.2)

The IR can also be derived in the frequency domain where the convolution becomes multiplication by
applying the FFT (F) to the signals

H[k] = F{y[n]}F{xinv[n]} . (2.3)

Applying the inverse FFT (F−1) to the transfer function H[k] leads to the IR h[n] in the time domain

h[n] = F−1 {H[k]} . (2.4)

2.1.2 Exponential Sweep

In order to derive the exponential sweep (ES), a basic discrete sinus signal can be described as

x[n] = sin(ϕ[n]) , ϕ[n] =

∫ N−1

0
ω[n]dn , (2.5)

where ϕ[n] is the current phase value and N the number of samples. A sinus sweep with exponentially
increasing frequency can be derived using the general exponential ansatz for ω[n]

ω[n] = cebn . (2.6)
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By evaluating the exponential ansatz, from eq. (2.6), with respect to the starting frequency ω0 and
the end frequency ω1 yields to the phase ϕ[n] with its constants c and b

c = ω0 , b =
1

N − 1
ln

(
ω1

ω0

)
. (2.7)

Therefore, x[n] can be calculated by evaluating the sinusiod with the phase φ[n] that starts with 0 as

x[n] = sin
[c
b

(
eb·n − 1

)]
. (2.8)

In order to also end the exponential sweep with zero phase, an optimal starting frequency was calcu-
lated as presented in [ZG22]. By having an exemplary fs = 48 kHz and a sweep length of N = 96000
samples, a starting frequency of f0 = 19.993Hz is calculated. The resulting normalized sweep in
frequency/time representation and the convolution with its inverse

xinv[n] =
2∑N−1

k=0 ω[k]
x[−n]ω[−n] (2.9)

are depicted in Fig. 2.1 and Fig. 2.2.

Figure 2.1: exponential sweep Figure 2.2: convolution of x[n] and xinv[n]

2.2 Post-Processing of the Measurements

2.2.1 Microphone Correction and Magnitude and Phase Averaging

In order to determine an equalization filter for an entire audience area, averaging the magnitude-
squared frequency responses of several measurement locations is required. After measurement, the
IRs hi[n] per microphone position i are calculated as described in section 2.1. The measurement
microphone’s magnitude can be compensated by adding a calibration file. The arbitrary amount of
given microphone calibration values will be automatically interpolated to match the sample frequency
fs. The inverse magnitude of the microphone |Hmic[k]|−1 is multiplied with each measured magnitude
before averaging, respectively as

|Hi[k]| = |F{hi[n]}| |Hmic[k]|−1 (2.10)

The normalized sum of the squared absolute values of the Fourier transformation of each i ∈ [1..I]
measured IR results in the spectral average Hav[k]

Hav[k] =

√√√√1

I

I∑
i=1

|Hi[k]|2 . (2.11)

Subsequent calculations are performed with Hav[k] from eq. (2.11).
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2.2.2 Magnitude Smoothing

A common technique to adapt equalization to the spectral resolution of the human auditory system is
to smoothen the frequency response by separation in relative bandwidths. Correspondingly, the aver-
aged magnitude Hav[k] is filtered with several n-octave band-pass filters. Thus, the volatile behavior

of the magnitude will be smoothed. For every nth-octave center frequency kc we calculate H
(kc)
av,s [k]

with

H(kc)
av,s =

NFFT/2∑
k=0

W (kc)[k]Hav[k] , (2.12)

where W (kc)[k] denotes a normalized cos2-filter-bank with the respective centre frequencies kc

W (kc)[k] =
W̃ (kc)[k]∑
m W̃ (kc)[m]

with W̃ (kc)[k] = cos2
[
π

2
Clip

{
ld

(
k

kc
noct

)
,−1, 1

}]
. (2.13)

The resulting filter bank for third octaves is shown in Fig. 2.3. In order to map the response back
to the initial frequency resolution of NFFT/2 + 1 bins, the smoothed values are multiplied with the
whole filter bank consisting of Noct frequency bands, such that

Hav,s[k] =

kc,Noct∑
kc=kc,0

W (kc)[k]H(kc)
av,s . (2.14)

A stronger overlap of the frequency bands can be considered for improved smoothing, using a higher
density of the center frequencies than an nth-octave.

Figure 2.3: Normalized cos2 third-octave filterbank W (kc)[k].

2.2.3 Minimum-Phase Version of IR

In order to obtain an IR from the averaged magnitude Hav,s[k], the minimum phase version of the mag-
nitude is calculated using the complex cepstrum. The following steps lead to the averaged minimum
phase version of the IR hmin[n], which is written as hs[n] for simplicity in the next chapter:

h[n] = F−1{ln (|Hav,s[k]|)}

hc[n] =


h[n] for n = 0

2h[n] for 1 ≤ n ≤ NFFT
2 − 1

h[n] for n = NFFT
2

0 for NFFT
2 + 1 ≤ n ≤ NFFT

hmin[n] = F−1{eF{hc[n]}}

(2.15)
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3 Equalization Filter Design

The current section describes the equalization filter design for parallel filter, minimum-phase FIR
filter, linear-phase FIR filter, and mixed-phase FIR filter in detail.

3.1 Parallel IIR Filter

3.1.1 General Filter Structure

The general form of the parallel filter can be denoted as the sum of second-order IIR-filters in the
z-domain [OSB99, chp.6] as

H(z) =

K∑
k=1

dk,0 + dk,1z
−1

1 + ak,1z−1 + ak,2z−2
+

M∑
m=0

bmz−m , (3.1)

where K is the number of second-order IIR sections, and M is the order of the finite impulse response
(FIR) sections. The filter coefficients dk, ak, and bm have to be determined such that the filter exhibits
bandpass character of pre-defined bandwidth around center frequencies. The structure is depicted in
Fig. 3.1. Based on the concept of parallel filters by B. Bank, the idea is to design a parallel filter

Figure 3.1: structure of parallel filter [Ban13b]

bank of these bandpasses and then find the weights that minimize the error between the equalized
response heq[n] and the target frequency response ht[n]. It yields a system identification problem with
output error minimization: the input of the parallel filter is the system response hs[n], and the tool
should estimate the filter parameters; thus, the output heq[n] matches best with the target response
ht[n]. Therefore, the transfer functions from eq. (3.1) can rewritten as

Heq(z) = H(z)Hs(z) =
K∑
k=1

dk,0 + dk,1z
−1

ak,0 + ak,1z−1 + ak,2z−2
Hs(z) +

M∑
m=0

bmz−mHs(z) . (3.2)

3.1.2 Pole Positioning

In the first step of the filter design, the filter frequencies fk are set to a logarithmic frequency scale,
as the frequency resolution of the human ear also exhibits logarithmic behavior. Therefore, the lowest
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and highest filter frequencies (flow, fhigh) are queried by the user. The number of poles per octave
(noct) can also be chosen from 1 to 24. An example filter frequency vector with flow = 100Hz,
fhigh = 2000Hz and noct = 3 with frequencies in Hz reads as

fk = [100, 125, 160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250, 1600, 2000]T . (3.3)

In order to calculate the pole frequencies θk from the filter frequencies, the bandwidth ∆θk needs to
be determined. ∆θk can be directly calculated by hand over the Q-factor of each filter frequency fk
respectively by

∆θk =
θk
Qk

, where θk =
2πfk
fs

with sampling frequency fs . (3.4)

For simplification, we calculate ∆θk concerning the neighbouring frequencies with

∆θk =

(
θk+1 − θk−1

2

)
. (3.5)

Thus, the corresponding poles pk are determined by

pk = e
−∆θk

2 e±jθk , (3.6a)

with the pole frequencies θk in radians [ban13a]. From filter theory, we can calculate the coefficients
ak,0, ak,1, ak,2 for a second-order all-pole filter directly. If we filter any signal using one pole pk and its
complex conjugate p∗k, the transfer function reads as

Hk(z) =
1

(1− pk z−1)(1− p∗k z
−1)

=
1

1 + 2Re {pk} z−1 + |pk|2 z−2
, (3.7)

so that the filter coefficients result in

ak,0 = 1 , ak,1 = 2Re {pk} , ak,2 = |pk|2 . (3.8)

3.1.3 Problem Formulation in Matrix Notation

After determining the denominator coefficients from the poles as described in the previous subsection,
the problem becomes linear in its free parameters dk,0, dk,1 and bm. The general form of a second-order
parallel filter, equation 3.1, in matrix notation can be written as

heq = Md , (3.9)

where d is a column vector that contains the free parameters,

d = [d1,0, d1,1, . . . , dK,0, dK,1, b0, . . . , bM ]T , (3.10)

and M is the modeling matrix consisting the measured IR hs[n] filtered with all K all-pole filters hk[n]
respectively, resulting in sk[n] and Sk[z] with

sk[n] =

N∑
i=0

hk[i]hs[n− i] = hk[n] ∗ hs[n] ,

Sk[z] = Hk[z]Hs[z] =
K∑
k=1

1

ak,0 + ak,1z−1 + ak,2z−2
Hs(z) .

(3.11)
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In order to fulfill eq. (3.2) using a matrix multiplication that holds the equation, we need to delay
each resulting sk[n] to match the one sample delay of every second free nominator parameters dk,1.
Inserting Sk[z] we can rewrite eq. (3.2) to

Heq(z) =
K∑
k=1

(
dk,0 + dk,1z

−1
)
Sk[z] +

M∑
m=0

bmz−mHs(z) . (3.12)

The last columns are the measured IR, again delayed respectively corresponding for the FIR-coefficients
bm, so that we obtain for M = 1

M =



s0[0] 0 s1[0] 0 . . . sK [0] 0 hs[0] 0
s0[1] s0[0] s1[1] s1[0] . . . sK [1] sK [0] hs[1] hs[0]
s0[2] s0[1] s1[2] s1[1] . . . sK [2] sK [1] hs[2] hs[1]
... s0[2]

... s1[2] . . .
... sK [2]

... hs[2]
...

...
...

...
...

...
...

...
s0[N ] s0[N − 1] s1[N ] s1[N − 1] . . . sK [N ] sK [N − 1] hs[N ] hs[N − 1]


. (3.13)

3.1.4 Weight Estimation using Least-Squares Algorithm

In the next step, the task is to determine the optimum parameters dopt in a way that ht = Mdopt is
closest to the target impulse response ht, with a flat frequency response

ht = [ht[0], . . . , ht[N ]]T = [1, 0, . . . , 0]T . (3.14)

In order to prevent over-compensation of the low-frequency range, the target response ht[n] is filtered
with a four-order high-pass with a variable cut-off frequency. The transfer function of the filter reads
as

HHP,4[z] =
b0 + b1z

−1 + b2z
−2 + b3z

−3 + b4z
−4

a0 + a1z−1 + a2z−2 + a3z−3 + a4z−4
, and Ht,HP[z] = Ht[z]HHP,4[z]. (3.15)

In the time-domain the mean square error eLS of the filtered target response ht,HP[n] is evaluated with

eLS =
N∑

n=0

|heq[n]− ht,HP[n]|2 = (heq − ht,HP)
H(heq − ht,HP) = (Md− ht,HP)

H(Md− ht,HP)

= dHMHMd− 2dHMHht,HP + hH
t,HPht,HP ,

(3.16)

and the optimal coefficients dopt are determined by searching the minimum of the derivative of eLS in
respect to d, such that

∇d (eLS)
!
= 0

2MHMdopt − 2MHht,HP = 0

MHMdopt = MHht,HP

dopt =
(
MHM

)−1
MHht,HP .

(3.17)

The resulting well-known least squares (LS) solution contains the Moore-Penrose pseudo-inverse M† =(
MHM

)−1
MH so that we can simplify eq. (3.17) to

dopt = M†ht,HP . (3.18)

The resulting filter-coefficients dk,0, dk,1, ak,0, ak,1, ak,2, bm can then be used to filter directly in real-
time using the parallel filters difference equation or compute an equalizing IR h[n] by the filtering of
a unit Dirac delta ht[n] with the parallel filter as

ak,0h[n] =

K∑
k=1

(dk,0ht[n] + dk,1ht[n− 1]− ak,1h[n− 1]− ak,2h[n− 2]) +

M∑
m=0

bmht[n−m] . (3.19)
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3.2 Minimum-Phase FIR Filter

A straightforward minimum-phase FIR implementation is performed using the minimum-phase ver-
sion of the measurement’s inverted, smoothed, and averaged magnitude response. The averaged and
smoothed magnitude Hav,s[k] from eq. (2.14) is inverted and filtered with the target magnitude Ht[k],
and its minimum phase version is calculated as described in section 2.2.3 as

hinv[n] = F−1

{
ln

(
|Ht[k]|

|Hav,s[k]|

)}

hc,min,FIR[n] =


hinv[n] for n = 0

2hinv[n] for 1 ≤ n ≤ NFFT
2 − 1

hinv[n] for n = NFFT
2

0 for NFFT
2 + 1 ≤ n ≤ NFFT

hmin,FIR[n] = F−1
{
eF{hc,min,FIR[n]}

}
,

(3.20)

where hmin,FIR[n] contains the FIR coefficients of the equalizing minimum-phase IR. Further truncation
of the IR to L coefficients bound the frequency resolution. Using a sampling frequency of fs = 44.1 kHz
and a L = 4096 tap length filter results in a theoretical frequency resolution of

∆fmin,FIR =
fs
L

=
44.1 kHz

4096
= 10.77Hz , (3.21)

which almost corresponds to the third-octave resolution at low frequencies as used for the parallel
filter (∆f3th/Oct,LF = 40Hz − 31.5Hz = 8.5Hz). Having an initial coarse smoothing of Hav,s[k], this
resolution may not be necessary, and the filter can be designed with a shorter length. This filter length
results in a minimal simply convolution delay ∆tmin,FIR of

∆tc,FIR =
L

fs
=

4096

44.1 kHz
= 92.88ms , (3.22)

which can be neglected by implementing the filtering process in an FFT-based Overlap-Save-procedure
presented in [PCR+11] because the IR is a minimum phase, and its prominent peak is at sample
location zero. Fig. 3.2 compares the L = 4096 tap FIR filter with a K = 28 poles parallel IIR filters
with M = 1, both filtered with an exemplary hs[n]. Besides a slight offset in magnitude, after filtering

Figure 3.2: Comparison of 4096 Tap FIR filter and 28 Pole Parallel IIR filter.

with the initial measured IR, the resulting filter and magnitude show almost the same behavior.
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3.3 Linear-Phase FIR Filter

Another common demand for equalizing loudspeakers’ frequency response in a room, preserving the
initial phase, is linear-phase FIR filtering. Similar to the calculation of minimum-phase filters, Hav,s[k]
gets inverted and filtered with the target response Ht[k]. As the filter should feature zero-phase
behavior, any phase information is neglected by only considering the magnitudes, and an inverse FT
leads to

ĥlin,FIR[n] = F−1

{∣∣∣∣ Ht[k]

Hav,s[k]

∣∣∣∣} . (3.23)

As the FT shows a mirrored frequency spectrum, the inverse FT mirrors its discrete time values.
To obtain a symmetric IR, which is mandatory to achieve linear-phase behavior [OSB99], the result
ĥlin,FIR[n] has to be circularly shifted by NFFT

2 such

hlin,FIR[n] =

{
ĥlin,FIR[n] for NFFT

2 ≤ n ≤ NFFT− 1

ĥlin,FIR[n] for 0 ≤ n ≤ NFFT
2 − 1

. (3.24)

Further truncation is then applied symmetrically around the most prominent peak to maintain the
linear-phase conditions to reduce latency with the drawback of decreased frequency resolution, which
can be determined with

∆flin,FIR =
fs
L/2

, (3.25)

and having the same filter length, the linear phase filter shows twice the frequency resolution compared
to the mixed phase filter. Fig. 3.3 compares the impulse, magnitude, and phase responses of a linear
phase FIR filter of 8193 samples with a minimum phase FIR filter of 4096 samples for comparable
frequency resolution. As expected, the prominent peak of the linear-phase IR is located at exactly
half of the overall samples, and the IR shows a symmetric behavior. The magnitude responses of both

Figure 3.3: Comparison of linear-phase FIR with normal FIR filter

filters show the same trace, while the phase response of the linear-phase filter is exceptionally zero.
The disadvantage of the linear-phase filter is the significantly higher latency. The phase shift caused
by the FIR filter is relatively tiny, and the compensation of the measured phase response can be seen
as an advantage. The linear-phase filter is a reasonable option only for purposes where linear-phase
is mandatory.

3.4 Mixed-Phase FIR Filter

In order to benefit from both the linear-phase behavior (sec.3.3) and minimum latency (sec.3.2), a
mixed version is also considered. Therefore, the higher frequencies are filtered linear-phase because
short filters are feasible and do not exceed typical buffer sizes. The lower frequencies are then filtered
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in the minimum phase to avoid introducing high latency of long enough symmetric filters that show
sufficient frequency resolution. The easiest way of designing such a filter is first calculating a linear-
phase filter hlin[n] with proper truncation (e.g., nlin = 256+1 samples causing a latency of 129 samples
and frequency resolution of ∆flin,FIR = 345Hz) as shown in sec. 3.3. Subsequently, filter the measured
and averaged IR hs[n] with the linear-phase filter as

Hlin,meas[k] = Hlin[k]Hs[k] . (3.26)

Afterwards, calculate a minimum-phase filter hmin,mix[n] as described in sec. 3.2 using the result of the
filtering process hlin,meas[n] not the measured IR and calculate the final mixed-phase filter by filtering
hmin,mix[n] with hlin[n] such that we obtain

hmixed[n] = F−1 {Hlin[k]Hmin,mix[k]} , (3.27)

with its IR hmixed[n]. The resulting filter shows a minimum delay of nlin
2 +1 = 129 samples and having

the advantage to be linear phase above 2 kHz.

3.5 Computational Cost

The main difference in evaluating the computational cost of implementing the filters on any processing
device is the need for a convolution for the FIR filters. In contrast, IIR can be directly implemented
using the difference equation (3.19). A convolution implemented conventional as in eq. (2.1) needs
O(NL ) multiplications per block, where N is the block size of samples and L is the length of the
IR. For long IRs, the implementation in the frequency domain is computationally more efficient since
it needs O( 3 (N + L − 1) log2(N + L − 1) + (N + L − 1) ) multiplications per block, resulting from
two FFTs with O( (N +L− 1)log2(N +L− 1) ) one for the signal and the other for the IR, a matrix
multiplication with O(N + L− 1) and an IFFT with O( (N + L− 1)log2(N + L− 1) ). Compared to
parallel IIR filters, the costs are O(N(5K+(M +1)) ) where K is the number of parallel IIR sections
and M the number of serial FIR sections.

For example, assuming a design goal of a third octave and a block size of N = 512, the filter length
for the minimum phase FIR filter needs to be at least L = 4096. The third octave parallel IIR filter
requires a total of K = 28 poles and M = 2 FIR sections such that we summarize the computational
costs with:

Minimum Phase FIR: 172800 multiplications per block, 338 multiplications per sample

Parallel IIR: 73216 multiplications per block, 143 multiplications per sample

3.6 Latency

In modern block-wise computations using Overlap-Save-algorithms for long IRs, the latency mainly
depends on the utilized block size and, therefore, is not necessarily considerable for the minimum phase
FIR and parallel IIR filters. By demanding linear phase even in the mixed or linear phase FIR filters,
latency is not avoidable and arises by the number of samples before the prominent peak. Concerning
linear phase filters, the latency is precisely half of the total length of the IR, and in mixed-phase filters,
it is specified by half of the length of the linear phase part of the IR.
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4 Software Implementation

4.1 Structure

The current chapter gives an overview of the implementation structure, shown in Figure 4.1. The
implementation was done in two steps. First, a general implementation was realized in MATLAB. In

Figure 4.1: Implementation structure

order to have better and smarter handling, an app was created via the MATLAB App - Designer.
In general, the operation procedure can be described as follows:

1. The DUT plays back several exponential sweeps, created as in sec. 2.1.2, and a microphone
measures them at different locations.

2. According to sec. 2.1.1, the different IRs are calculated.

3. The post-processing procedure of averaging, smoothing, and calculating the minimum phase
version is performed as presented in chp. 2.2.

4. The logarithmic band limited poles are determined as in sec. 3.1.2.

5. The modeling matrix M comprises the all-pole filtered average measured IR calculated corre-
sponding to sec. 3.1.3.

6. The LMS algorithm calculates the optimal nominator weights as described in sec. 3.1.4.

7. Optionally, a Dirac impulse δ[n] can be filtered with the parallel filter, resulting in an IR with
rectifying properties.
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4.2 Operation Procedure

In order to get started with the app, the following initial settings must be set:

• Sampling Rate in Hz

• Available input device

• Available output device

• Estimated reverberation time (RT60) in seconds

• Sweep length in seconds

• Number of IR measurements

The sampling rate should match the sampling rate of the interface. The dropdown menu will auto-
matically display the available input and output interfaces found by the system, which the user can
choose from. In the next step, the user has to enter the estimated RT60 of the room. Furthermore, the
length of the sweep can be chosen, and the amount of different IR measurements at several locations.
By clicking on ≪[read Settings]≫ the defined initial settings are loaded into the software. Fig. 4.2
shows the app’s graphical user interface (GUI).

Figure 4.2: App overview
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In the next step, the measurement run of the IRs can be started immediately by clicking on the but-
ton ≪[Measurement]≫ . After each sweep, the user is asked to modify the microphone’s location to
get a complete set of IRs in the considered measurement area. After confirmation via the ≪[OK]≫

button, the subsequent measurement will trigger automatically. This procedure is performed for the
chosen number of IR measurements. Weighing special regions can be realized by increasing the num-
ber of measurements within these regions. After each measurement, the calculated IR is aligned and
appended to the top plot of the GUI. Therefore, the most prominent peak is found, and the IR is
normalized so that all measured IRs are aligned and comparable.

The number of poles must be pre-determined to calculate the resulting filter. Therefore, the user
picks the lowest and highest pole frequency (flow, fhigh) of a given set and the number of poles per
octave noct. In order to obtain the most reasonable distribution of the poles, which determine the
resolution of the filter around the corresponding frequency, a logarithmic frequency resolution with a
constant Q on a logarithmic axis is implemented. The logarithmic frequency spacing corresponds best
to the resolution of the human ear following the ERB scale [KP06]. Twenty-four pole frequencies per
octave are pre-calculated between an interval fk ∈ [15.625, 32000]Hz, diminished and adjusted as the
user specifies. Fig. 4.3 shows an exemplary logarithmic pole distribution in the entire interval with
noct = 3.

Figure 4.3: logarithmic pole distribution.

The dimensions of the enclosure and chassis of a loudspeaker bound their ability to produce very
low frequencies. To prevent overcompensation in that region, the target response, which the LMS
algorithm optimizes the filter coefficients, can be adapted to match the speaker’s capabilities. Before
step 6. in sec. 4.1, the target response is filtered with a fourth-order high-pass filter with variable
cut-off frequency, defined by the user, such as described in eq. (3.15) in sec. 3.1.4. For most cases, a
meaningful cut-off frequency can be obtained by the −3 dB value provided by the manufacturer or by
just identifying the bound in the measured magnitude.

Creating an equalizing IR - an IR that filters the loudspeaker such that the desired target frequency
response arrives in the measured area - requires truncation of the infinite IR. The window size can
adjust the number of samples that pass the truncation. The smaller the window size, the smaller
the frequency resolution and, therefore, the capability of equalizing and reproducing low frequencies.
A good rule of thumb is that a tenth of the sampling frequency in samples results in a third-octave
resolution in the low frequencies, see eq. (3.22).

The button ≪[load mic correction ]≫ allows loading a mic correction curve for the used micro-
phone. This correction is applied to the single measurements before averaging, as described in sec.2.2.
After setting the parameters, the button ≪[calculate filter]≫ performs the LMS calculation of the
filter coefficients.
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The nOct-Octave smoothed magnitudes of

• the averaged measurement in violet,

• the resulting filter in amber,

• and the filtering result of both in yellow,

are displayed in the main plot window. Additionally, the pole frequencies are indicated by the black
circles at the bottom of the plot. Visualizing these three magnitudes aims to understand how the
calculated filter performs on the measurement. As the app allows the user to change the parameters
for poles, high-pass filter, smoothing, and truncation amount, the visualization helps find the optimal
filter. The filter can be calculated several times, and the user has immediate feedback on the impact
on the resulting equalized loudspeaker room response.

If a resulting design matches the user’s requirements, the equalizing IR (click ≪[save EQ(.wav)]≫ )
and the measured and averaged IR (click ≪[save avg. IR(.wav)]≫ ) can be saved as .wav file. Ad-
ditionally, the app gives access to the filter coefficients and all measurements separately collected in a
.mat file by clicking on ≪[save results]≫ . The button ≪[reset Settings]≫ leads back to a new mea-
surement run and resets all loaded measurements and preferences. If previous measurements should
feed the algorithm, the button ≪[load IR]≫ allows the user to select saved measured IR as .wav file
for the filter calculation.
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5 Results

5.1 Window Length

First, the impact of the window length is evaluated. Fig. 5.3 shows the results with two different
window lengths. Short window lengths lead to an inaccurate frequency resolution in the low frequen-
cies. Hence, the equalization in this range is also impaired. Increasing the window length results
in an appropriate equalization transfer function. Further increasing the window length can lead to
overcompensation of the low frequencies.

Figure 5.1: 800 samples truncation Figure 5.2: 6400 samples truncation

Figure 5.3: Calculation with pole distribution with n = 6, and truncation of measured IRs

5.2 Validation Measurement

In order to validate the results of the application, a test measurement was performed. Four IRs were
calculated with different poles per octave. The effect of the calculated IR on a loudspeaker was mea-
sured using Smaart v8 1. A two-channel fast Fourier transformation calculates the transfer function
of the path between a measurement microphone and the loudspeaker. Figure 5.4 shows the speaker’s
frequency response and the responses after convolution with the different calculated IRs (for 3,4,12,24
poles per octave). For better consideration, Smaart v8 smoothed all measurements to 1/12 octaves,
the results with different smoothing adjustments are shown in the appendix.

By viewing Fig. 5.4, it is visible that the equalization succeeds, and the magnitude flattens out even
by using three poles per octave. It stands out that some significant ripples occur in the frequency
range from 250Hz to 500Hz in all four corrected magnitudes. Why even the most dense resolution
cannot flatten out this range needs to be discussed.

5.3 Pole Resolution

Four different filtering IRs are calculated with pole resolutions from three to 24 poles per octave to
investigate different pole frequency resolutions. By comparing the red curve in Fig. 5.4, which is the

1http://www.rationalacoustics.de/smaart-v8.html
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Figure 5.4: Validation measurement with Smaart v8. red: measurement, blue: corrected with three
poles/octave, orange: corrected with six poles/octave, green: corrected with 12 poles/oc-
tave, black: corrected with 24 poles/octave. All smoothed to 1/12 octaves

unequalized frequency response, against the blue curve, it is visible that the frequency response of
the speakers appears flatter. The blue graph results from the convolution with the three-poles-per-
octave IR. By increasing the number of poles per octave during calculation, the resulting speaker
curve gets more and more flat. Because of the low-frequency poles’ density, more than 12 poles per
octave add ripples in this range. Depending on the application, fewer poles could also be a good choice.

Calculating the IR with poles in the low-frequency range and a shallow high-pass filter for the target
response can result in overcompensation and clipping effects. To prevent this, a well-considered selec-
tion of calculating parameters is mandatory. The graphical interface of the app helps to find suitable
parameters.

5.4 Magnitude: Parallel IIR, Minimum-, Linear-Phase FIR Filter

In order to compare the different types of filter designs, the same averaged magnitude is corrected
with a 30-pole parallel filter, a 4096-tap minimum-phase FIR filter, and a 4097-tap linear-phase FIR
filter. In the appendix 7, Fig. 7.4, 7.5,7.6 depict the filter magnitudes, the measurements, and the
resulting equalized responses. Overall, the magnitudes are extremely similar, especially in the higher
frequency range, which indicates that all three designs work well. The only difference is visible in
the low-frequency range below 100Hz. The third-octave resolution of the parallel filter leads to an
accurate equalization down to 20Hz. The minimum-phase FIR magnitude with 4096 taps a resulting
linear frequency resolution of 10.77Hz is also capable of correcting the magnitude with some minor
ripples down to 20Hz. Due to the symmetry of a linear-phase filter with 4097 samples, the frequency
resolution

∆flp,FIR =
fs
L/2

=
44.1 kHz
4097/2

= 21.53Hz , (5.1)

limits the exact correcting in the very low-frequency range, which results in the ripples between 20Hz
and 80Hz.
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5.5 Phase: Parallel IIR, Minimum-, Linear-, and Mixed-Phase FIR Filter

The mixed-phase implementation was also taken into account when evaluating the phase responses.
The results in magnitude and phase are shown in Fig. 5.5. All filter algorithms are fed again with the

Figure 5.5: Comparison of different filter implementations in magnitude and phase

same measured IRs hi[h] of 15 observation locations in a small studio around the listening position.
The averaged magnitude response Hav[k] of this measurement is smoothed with an 1/6−octave filter
bank towards Hav,s[k] and the corresponding microphone correction is applied. As the target for all
algorithms, a Dirac delta filtered with a 56Hz high-pass of order six is used. For the parallel IIR filter
(IIR-parallel), a pole resolution of three poles per octave in the range from 30Hz−20 kHz was chosen.
The minimum phase FIR filter (FIR-min) has a length of 4096 samples. To maintain frequency res-
olution, the filter length of the linear phase (FIR-lin) is doubled with 8193 samples. The linear part
of the mixed phase filter (FIR-mix) contains 256 samples while the whole filter is truncated to 4096
samples.

The similarities in the magnitude of the different algorithms are unambiguous. Except for the mini-
mum FIR filter, all filter magnitudes behave nearly the same throughout the whole frequency range.
At very low frequencies, the minimum phase filter cuts less. The main differences between the designs
are in the phase responses. The minimum phase and parallel IIR show an inverted phase response
compared to measurement in the high frequency. As expected, the linear phase filter does not change
the phase as well as the mixed phase filter in the frequencies above 2 kHz. The mixed-phase filter
shows a similar phase at lower frequencies with minor deviations as the parallel IIR filter.
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6 Conclusion

In this seminar report, a prototype application (Automatic Loudspeaker Equalization) was developed
in MATLAB and published on Git1, using parallel, FIR, and linear-phase filters, showing how to
equalize loudspeakers in the playback room in an automated way. This prototype application can be
used as a template for developing an automatic EQ plugin.

A perceptually matched frequency response equalization of the loudspeaker in the measured play-
back room can be achieved by n-band smoothing and averaging over multiple listening positions. The
automation is done by an automatable sweep measurement routine and its deconvolution, the process-
ing of the measured impulse responses by third-octave band smoothing and local averaging, as well
as minimum phasing, and the formation of an equalization frequency response with Balazs Bank’s
parallel filter technique, which allows a freely parameterizable complexity/precision of the equaliza-
tion filters. An FIR and linear-phase FIR filter calculation is also implemented for purposes beyond
real-time processing.

As output, the software provides all IR measurements, the average IR, the suitable equalizing IR,
and the filter coefficients for a parallel filter bank. A prototype .vst-plugin imports the resulting
parallel-filter coefficients and performs a filtering process in the time domain. This prototype is only
capable of stereo applications and expects two sets of coefficients for the left and right audio channels,
respectively.

The example application demonstrates how the subtasks with all their parameters can be compactly
operable, and the resulting frequency responses remain verifiable simultaneously. The app, which
was presented in this work, can be improved in several steps. The following aspects are not covered
within this work: evaluation of the filter quality within a listening experiment, further implementation
of a multichannel version (stereo and ambisonics) with multi-sweep measurement, consideration of a
target-response (customized EQ-curve) as well as a full realization as .vst-plugin.

1https://github.com/simonwindtner/ALE
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7 Appendix

7.1 Derivation of Exponentially Decreasing Sinusiods

Using a partial fraction expansion to eq. (3.7) we get

Hk[z] =
1

(1− pkz−1)(1− p∗kz
−1)

=
C

(1− pkz−1)
+

C∗

(1− p∗kz
−1)

. (7.1)

In order to obtain C we multiply 7.1 with (1− p∗kz
−1)(1− pkz

−1)

1 + 0z−1 = C(1− p∗kz
−1) + C∗(1− pkz

−1) = C + C∗ − z−1(Cp∗k + C∗pk) , (7.2)

and compare the coefficients such that

1 = C + C∗ and 0 = (Cp∗k + C∗pk) −→ C =
pk

pk − p∗k
. (7.3)

Knowing C, we are able to determine the IR hk[n] directly from Hk[z] as

hk[n] = C pnk u[n] + C∗ p∗k
nu[n] , with unit-step-function u[n] . (7.4)

By using the expression for the poles as in eq. (3.6a) we define

pk = e
−∆θk

2 ejθk = e
−∆θk

2
+jθk and p∗k = e

−∆θk
2 e−jθk = e

−∆θk
2

−jθk . (7.5)

The constant C and C∗ become

C =
pk

pk − p∗k
=

e
−∆θk

2 ejθk

e
−∆θk

2 (ejθk − e−jθk)
=

ejθk

2jsin(θk)
and C∗ = − e−jθk

2jsin(θk)
. (7.6)

Updating hk[n] from eq (7.4) by using C and the exponential expression for the poles pk we get

hk[n] =
ejθk

2jsin(θk)

(
e

−∆θk
2 ejθk

)n

u[n]− e−jθk

2jsin(θk)

(
e

−∆θk
2 e−jθk

)n

u[n]

=
1

2jsin(θk)

(
ejθke

−∆θkn

2 ejθkn
)
u[n]− 1

2jsin(θk)

(
e−jθke

−∆θkn

2 e−jθkn
)
u[n]

=
e

−∆θkn

2

2jsin(θk)

(
ejθkejθkn − e−jθke−jθkn

)
u[n] =

e
−∆θkn

2

2jsin(θk)

(
ejθk(n+1) − e−jθk(n+1)

)
u[n]

=
e

−∆θkn

2

2jsin(θk)
2jsin(θk(n+ 1))u[n] =

e
−∆θkn

2

sin(θk)
sin(θk(n+ 1))u[n] .

(7.7)

As we can observe, the resulting IRs from the all-pole-filter are exponentially decreasing sinusoids,
which are scaled with 1

sin(θk)
. From this, it follows that the low-frequency sinusoids are drastically

raised in amplitude. Fig. 7.1 show some exemplary and normalized hk[n]’s and its magnitude.
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Figure 7.1: Exemplary exponentially decreasing sinusoids in the time- and frequency domain

7.2 Additional Plots

Figure 7.2: Calculation from the app for 3 poles/octave; All smoothed to 1/6 octaves
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Figure 7.3: Calculation from the app for 24 poles/octave; All smoothed to 1/6 octaves
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Figure 7.4: Parallel filter
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Figure 7.5: FIR filter
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Figure 7.6: Linear-phase filter

Figure 7.7: Validation measurement with Smaart v8. red: measurement, blue: corrected with 3
poles/octave, orange: corrected with six poles/octave, green: corrected with 12 poles/oc-
tave, black: corrected with 24 poles/octave. All smoothed to 1/3 octaves

Figure 7.8: Validation measurement with Smaart v8. red: measurement, blue: corrected with 3
poles/octave, orange: corrected with 6 poles/octave, green: corrected with 12 poles/oc-
tave, black: corrected with 24 poles/octave. All smoothed to 1/6 octaves
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Figure 7.9: Validation measurement with Smaart v8. red: measurement, blue: corrected with 3
poles/octave, orange: corrected with 6 poles/octave, green: corrected with 12 poles/oc-
tave, black: corrected with 24 poles/octave. All smoothed to 1/24 octaves
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