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Abstract: Spaciousness is an important psychoacoustic feature in room acoustics, with the interaural cross correlation
(IACC) an accepted parameter for its measure, the latter employing the head head-related transfer functions (HRTF).
Recently, spherical microphone arrays have been studied for room acoustics analysis and music recordings. As these
arrays typically use a finite number of microphones, they maynot be able to capture the spatial information required for
complete spatial analysis or for sound reproduction with realistic spaciousness. This study employs spherical harmonics
representations for both the HRTF data and the sound field data, facilitating IACC analysis for sound fields represented
by a finite order in the spherical harmonics domain. As diffuse sound fields, often used to model sound in reverberant
rooms, are characterized by spatial correlation, the relation between IACC and spatial correlation for diffuse sound fields
is studied in the spherical harmonics domain. The effect of limited spherical harmonics order on the spaciousness of
diffuse and other sound fields is presented using simulated and measured data.
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1 INTRODUCTION

Two important measures that affect spatial impression, or
spaciousness, in concert hall are apparent source width
(ASW) and listener envelopment (LEV). ASW relates to
the spatial width of the perceived sound source, and is af-
fected by the degree of dissimilarity of the musical sound
reaching the two ears in the first 80-100 ms after the di-
rect sound [1]. LEV relates to the density and the spatial
distribution of reflections reaching the ears, and is mostly
affected by the sound arriving 80-100 ms after the direct
sound [2] [3]. Although ASW and LEV are subjective mea-
sures, some objective measures have been developed to re-
late to these measures, among these an important measure
is the interaural cross correlation (IACC)[4]. IACC is mea-
sured using a human or a dummy head and is computed
from the time correlation between the two ears. IACC is af-
fected by the head related impulse response (HRIR) or head
related transfer function (HRTF) which are the time and fre-
quency response functions between a source and the ears of
a listener.

Spherical microphone arrays have been studied recently for
a broad range of applications, in particular analyzing room
acoustics in three-dimensional sound fields, using, for ex-
ample, plane-wave decomposition of the sound field [5] [6].
Spherical array data combined with HRTF data can be used

to measure acoustic parameters in rooms such as IACC. [7]

The diffuse sound field model is often used when analyzing
late reflections in halls, and can therefore be useful when
calculating IACC with late reflections i.e. IACCL. This pa-
per presents a relation between spatial-temporal correlation
in a diffuse field and IACC. Analysis of IACC and diffuse
fields are made in the spherical harmonics domain in order
to investigate the effect of sound field order in the spherical
harmonics domain on IACCL.

2 PLANE WAVES AND SPHERICAL FOURIER
TRANSFORM

Consider a sound pressure functionp(k, r, θ, φ), with
(r, θ, φ) the standard spherical coordinate system, which is
square integrable overΩ ≡ (θ, φ), with k the wavenumber.
Its spherical Fourier transform (SFT),pnm(k, r) and the in-
verse spherical Fourier transform (ISFT) are defined [8] by:

pnm(k, r) =

∫

Ω∈S2

p(k, r,Ω)Y m∗

n (Ω)dΩ (1)

p(k, r,Ω) =

∞
∑

n=0

n
∑
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pnm(k, r)Y m
n (Ω) (2)



where
∫

Ω∈S2 dΩ ≡
∫ 2π

0

∫ π

0
sin θdθ dφ, and the spherical

harmonics are defined by:

Y m
n (θ, φ) ≡

√
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4π
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(n + m)!
Pm

n (cos θ)eimφ (3)

with n the order of the spherical harmonics andPm
n is as-

sociated Legendre function. We consider a plane wave with
unit amplitude arriving from (θl, φl) , the pressure at the po-
sition (r, θ, φ) due to the plane wave ispl(kr, θ, φ) and its
SFT is given by [9]:
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whereΘ is the angle between(θl, φl) and (θ, φ), and the
equality in (4) is derived using the spherical harmonic ad-
dition theorem [10]. bn(kr) is defined for open sphere and
rigid sphere as follows:
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





4πin
(

jn(kr) −
j
′

n
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h
′

n
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)

rigid

4πinjn(kr) open
(5)

where jn is the spherical Bessel function andhn is the
spherical Hankel function andj′n, h′

n are derivatives. An-
alyzing sound fields in the spherical harmonics domain
usually requires a spherical microphone array, configured
around an open or rigid sphere. One advantage of analyz-
ing the sound field in the spherical harmonics domain is
the ability to decompose the pressure function into plane
waves [11] therefore estimating the number and amplitudes
of the plane waves composing the sound field. Furthermore,
a rigid sphere may provide an approximation for a human
head, and therefore can be useful when analyzing the ex-
pected sound field in the presence of a listener. When using
a spherical microphone array, a finite order of the spherical
harmonics will be used, leading to measurement errors that
depend on the spherical harmonics order, the number and
locations of the microphones (samples over the sphere) and
the maximum frequency of the sound field [12].

3 IACC CALCULATION FROM HRTF AND
SOUND FIELD DATA

HRTF is the frequency response between a source and the
left or the right ear ,H l(k,Ω) andHr(k,Ω) respectively,
with k = 2πf

c
and c the speed of sound. Combining the

HRTFs with a(k,Ω), the amplitude density of the plane
waves from all directions, we get the Fourier transform of
the pressure at the left ear [7]:

pl(k) =

∫

Ω∈s2

a(k,Ω)H l(k,Ω)dΩ (6)

Denotingã(k,Ω) ≡ a∗(k,Ω) where“∗′′ denotes complex
conjugate , substituting Eq. (2) in Eq. (6) and using the

orthogonality property of the spherical harmonics, Eq. (6)
can be simplified, written here for both ears:
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Calculating the inverse Fourier transform of the pressure
will produce the pressure in the time domain, which can
be used to calculate the interaural cross correlation function
[13]:

ρt1,t2(τ) =

∫ t2

t1
pl(t)pr(t + τ)dt

√

∫ t2

t1
p2

l (t)dt ·
∫ t2

t1
p2

r(t)dt
(8)

IACC is then defined as the maximum of the absolute value
overτ :

IACCt1,t2 = max
τ

|ρt1,t2(τ)|, τ ∈ (−1, 1)msec (9)

4 SPATIAL CORRELATION IN A DIFFUSE FIELD

A method to determine the spatial correlation in a diffuse
field has been presented by Cook et al. [14] and developed
by Nicholas et al. [15]. A diffuse sound field is defined
as consisting of plane waves with equal magnitude and ran-
dom phases. The time correlation between two measure-
ment points due to a single harmonic plane wave, can be
shown to equalcos(ωτ + kr cos(θ)), whenθ is the angle
between the wave incident direction and the line connect-
ing the two points. This term can be integrated over a sphere
with equal weights to derive the spatial-temporal correlation
in a diffuse field, given by [16]:

ρ(k, r, τ) =
1

4π

∫ 2π

0

∫ π

0

cos(ωτ + kr cos(θ)) sin θdθdφ

=
sin kr

kr
cos(ωτ) (10)

If the sound field has a band of frequencies of equal weights,
from ω1 to ω2 , then the spatial-temporal correlation can be
calculated using the integration over all bands:

ρBB(r, τ) =
1

ω2 − ω1

∫ ω2

ω1

sin(ω r
c
)

ω r
c

cos(ωτ)dω (11)

Computing the spatial-temporal correlation in the spherical
harmonics domain can be useful for generalization to the
case of a measurement around a rigid sphere. Assuming a
harmonic plane wave, the measured acoustic pressure at a
given measurement point will be defined as the real part of
the complex pressurepi = Re

{

pφie
jωt

}

, whenpφi is the
complex amplitude. Computing time correlation between
two different measurement points gives:

R(τ) =
1

2
Re

{

ejωτpφ1p
∗

φ2

}

(12)
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Assuming two measurement points at coordinates(r, π
2 , 0)

and(r, π
2 , π), wherer is constant, Eq. (12) can be integrated

over the sphere to represent a diffuse field. By using Eq. (4)
and the orthogonality property of the Legendre polynomi-
als, the integration will give:

R(k, τ) =
cos (ωτ)

2

∞
∑

n=0

(−1)
n (2n + 1)

4π
|bn(kr)|

2 (13)

The autocorrelation for the same measurement point would
be 1

2 |pφi|
2, and integrating over the sphere will give:

R(k) =
1

2

∞
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2 (14)

and overall the spatial-temporal correlation coefficient will
be:
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For a broadband sound field a similar definition would apply
as in Eq. (11):
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(16)
Notice that when choosingbn(kr) as defined in Eq. (5) for
an open sphere, Eq. (16) reduces to Eq. (11).

IACCL is the IACC which is measured for sound arriv-
ing approximately 80-100 ms after the direct sound, and
is considered to be related to LEV. Reverberant sound can
usually be modeled by the diffuse sound field model and
therefore this model can be useful in estimating IACCL.
Furthermore, calculating IACCL, can be useful in estimat-
ing the level of diffuseness of the sound field. Computing
the spatial-temporal correlation of a diffuse field for the se-
lected measurement points as in Eq. (16), may be useful
representation for the measurement of IACCL.

5 SIMULATION STUDY

In this section, a simulation study has been performed aim-
ing to investigate the relations developed above. A sound
field composed of harmonic plane waves was simulated,
where the distancer was chosen as 0.09 meters to represent
the radius of an average head. For a single frequency sound
field, a range up to 10KHz was analyzed and for broad-
band sound field, octave bands from 125Hz to 8KHz were
analyzed. Figure1 presents an analysis of a diffuse sound
field with a single frequency in free space. A comparison
has been made of Eq. (15), whenτ = 0 for a maximum
value, with different number of spherical harmonics coeffi-
cients, whenbn was chosen to represent the sound field in
free space. The valueN = 20 was chosen to constructρ(τ)

without errors in the given frequency range. Figure1 shows
that a smaller number of coefficients is required to construct
ρ(τ) without errors for lower frequencies. The symbolsXN

is marked on the figure,N denoting the number of coeffi-
cients, indicate the point whereN = kr. It seems that up
to the point whereN = kr the errors are smaller and the
number of coefficients is sufficient for approximatingρ(τ).
Computing using sound field with larger frequencies will
cause noticeable errors. Figure2 presents the same analysis
as Fig.1, for abn which represent the sound field measured
on a rigid sphere. It seems that hereN = kr also indi-
cates the maximum frequency where a given orderN will
be sufficient for approximatingρ(τ).
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Figure 1: The magnitude ofρN for N coefficients, where
bn is defined for an open sphere. TheXN marks indicate
the frequency whereN = kr.

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X
5

X
10

X
15

Frequency [KHz]

M
ag

ni
tu

de

 

 

ρ
20

ρ
15

ρ
10

ρ
5

Figure 2: The magnitude ofρN for N coefficients, where
bn is defined for a rigid sphere. TheXN marks indicate the
frequency whereN = kr.

Figure 3 presents the difference between usingbn for an
open and rigid sphere in Eq. (15), usingN = 20 as the
number of coefficients constructing both functions. As ex-
pected, the correlation between two measurement points on
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a rigid sphere will drop faster as frequency increases, due
to bending of sound fields around the rigid sphere causing
plane waves to travel a larger distance between the points.
The noticeable difference emphasizes the need for using the
rigid spherebn especially when comparing the computa-
tions of IACCL, where a listener’s head is present and af-
fecting the sound field.
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Figure 3: The magnitude of Eq. (15), comparingbn with
an open and a rigid sphere

Table 1 presents several numerical computations of the
spatial-temporal correlation in a diffuse field of an octave
band sound field. The computations were made using Eq.
(16) where the limits of the integration were chosen accord-
ing to different octave bands. The values presented are the
maximum absolute value ofρ(τ), whereτ ∈ (−1, 1)msec.
The computations were made using bothbn as open and
rigid sphere as indicated in the table.N , which was calcu-
lated as⌈max(kr)⌉, represents the minimum coefficients
needed in order to achieve a good estimation of the spatial-
temporal correlation. The results shown in table1 may be a
good estimation for the real values of IACCL, measured in
a diffuse sound field.

Open Rigid
Octave [Hz] max |ρ| max |ρ| N

125 0.9673 0.9250 1
250 0.8737 0.7029 1
500 0.5584 0.1097 2
1000 0.1213 0.0747 3
2000 0.0772 0.0279 5
4000 0.0375 0.0095 10
8000 0.0179 0.0029 19

Table 1: Correlation in a diffuse sound field for different
octave bands

6 CONCLUSION

IACC is an important measure for estimation of spacious-
ness in concert halls. IACCL refers to IACC measurements

of late reflections, usually in reverberant sound fields. Since
the sound field can be modeled as a diffuse sound field,
IACCL can be estimated by this model. Spatial-temporal
correlation of a diffuse field may therefore provide a good
representation for IACCL in a diffuse field, although the
fine attributes of the HRTF may not be modeled. Analyzing
this model in the spherical harmonics domain can give a
better understanding of the behavior of IACCL, when in-
stead of using a dummy head, the rigid sphere model is
used. Furthermore, this study may help understand the rela-
tions between the order of the spherical harmonics and the
spatial perception of sound.
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