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Abstract: We introduce a new class of 3D microphone arrays that use symmetrical arrangements of tangential velocity 
sensors.  Use of velocity sensors allows these arrays to recover spherical harmonics of a given degree with less low-
frequency boost than when using pressure sensors only.  As an example we present a symmetrical array of twelve 
velocity sensors that resolves the eight harmonics of degrees 1 and 2.  A second-order spherical microphone can now 
be constructed by combining this array with one or more pressure sensors that provide the missing harmonic of 
degree 0.  
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1 INTRODUCTION 

Following its invention in the 1970s, the Ambisonic 
Soundfield Microphone [1] was for many years the only 
microphone capable of single-point 3-D capture of a 
sound field, and then only with first order directional 
resolution.  Recently there has been much interest in 
producing a second-order or higher-order successor (see 
for example [2], [3], [4], [5] and [6]), several of the recent 
designs being based on a 1975 paper by Gerzon [7] which 
proposed spherical arrays of microphone capsules to 
sample the sound field at points arranged in a good 
‘integration rule’ on the sphere. 

However while mathematically elegant, there appear to be 
practical difficulties in implementing the ‘integration rule’ 
approach.  After explaining some of the problems, we 
propose the use of dipole1 sensors mounted tangentially 
on the surface of a sphere, in order to recover first and 
higher degree2 spherical harmonics.  We present and 
analyse several symmetrical arrays of this type. 

2 ENHANCING DIRECTIVITY 

A fundamental problem that besets the designer of a high-
order microphone is that while pressure sensors provide 
the zero-degree component (“W”) of a sound field, and 
velocity sensors can provide the three first degree 

                                                           
1 Also known as “velocity”, “pressure gradient” or “figure-of-
eight” sensors. 

2 We use the term “degree” in relation to an individual 
harmonic, and “order” to refer to the maximum degree of 
harmonic that is retrieved by a microphone that may retrieve 
harmonics of several different degrees. 

components (“X”, “Y”, “Z”), we know of no physical 
principle that directly retrieves a spherical harmonic of 
second or higher degree. 

A method of obtaining a second order response by 
differencing the outputs of two closely-spaced first-order 
sensors was disclosed in Blumlein’s 1936 patent [8].  The 
differencing incurs a 6dB/8ve loss of low frequencies 
however, thus requiring bass boost in an equalizer (shown 
as a passive shelf filter in Blumlein’s patent). 

The ‘Blumlein Difference Technique’ can be applied 
repeatedly but each time the order of response is increased 
by one, a further 6dB/8ve boost is needed.  This result 
applies equally to the capsule arrays considered by 
Blumlein and to the spherical arrays that have been 
considered recently. 

The “integration rule” principle as given by Gerzon [7] 
can be summarized as follows.  The outputs of a spherical 
array of pressure sensors are firstly given a weighting as 
prescribed by the integration rule.  (The weights may be 
all equal in the case of a completely symmetrical array.)  
A degree zero (“W”) directional output is obtained simply 
by taking the sum of the weighted sensor outputs.  A 
harmonic output of first or higher degree is obtained by 
applying to each weighted sensor output a further 
weighting proportional to the value of the harmonic at the 
sensor, before summing the weighted sensor outputs.  This 
will produce an output having the correct directionality 
(subject to the integration rule being good enough) but 
deficient in bass.  An nth degree harmonic obtained in this 
way requires equalization (bass boost) of, asymptotically, 
6×n dB/8ve.  Figure 1 (taken from Gerzon [7]) shows a 
signal processing structure for a first-order microphone, 
the “Matrix” implementing the weighted summations 
referred to above. 
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Figure 1 : Extraction of harmonics from a spherical array 
(from Gerzon [7]). 

3 SPHERICAL ARRAY OPTIONS 

The need for, for example, a 12dB/8ve bass boost in order 
to produce a second order output from pressure sensors 
makes it difficult to construct a studio quality microphone 
using the principle just described [2]. 

A larger sphere radius lowers the ‘knee’ frequency below 
which boost must be applied, and so lowers the total 
amount of boost.  However, larger spheres will result in 
anomalies at high frequencies (roughly, frequencies at 
which the spacing between adjacent capsules is 
comparable with a wavelength) and in practice the boost 
will be required over most of the audio frequency range. 

As the signals to be boosted are obtained using a matrix 
that subtracts larger but nearly equal signals, the 
requirement to boost not only increases noise but also 
magnifies modulation noise and nonlinear effects, and 
makes capsule matching extremely critical [2]. 

If first order capsules can be used in place of pressure 
sensors, then the required boost is reduced by 6dB/8ve, so 
now is ‘only’ 6dB/8ve for a second order output (c.f. 
figure 1 of [4]). 

First order capsules are directional, and it would be 
natural to point the directional capsules radially outwards 
from the centre of the sphere.  This however raises the 
question of whether the sphere exists physically and is 
solid, or whether the microphones are in an ‘open’ 
arrangement on the surface of a conceptual sphere.   

Equalisations for the solid sphere and for the open (or 
‘free field’) spherical arrangement have been quoted in 
[2], [4], [6] and several other recent publications.  It can 
be shown that the equalization for the solid sphere takes 
the form of simple analogue filters: 3 

                                                           
3 These analogue equalizations are exact, and can be derived 
from the more complicated expressions usually quoted that use 
spherical Bessel functions and/or Hankel functions.  They were 
known in 1896 to Lord Rayleigh, who derived them in relation 

Degree 0 s + 1 

Degree 1 s + 2 + 2/s 

Degree 2 s + 4 + 9/s + 9/s2 

where the Laplace transform variable s is scaled 
appropriately.4,  

The unequalised response of degree 2 is a cascade of a 
first-order HF rolloff and a 2nd order LF rolloff with a 
Q of 1.01.  The corresponding time response is thus well 
damped.  This contrasts with the open sphere case, in 
which the HF response has ‘wiggles’, caused by a discrete 
event in the unequalised impulse response corresponding 
to the propagation time for an impulse to cross the 
diameter of the sphere.  These wiggles are minimized by 
the use of cardioid capsules ([4], [6]) but are nevertheless 
visible in plots such as figure 1 of [4], and cannot of 
course be equalized exactly by simple analogue means. 

Another problem to be faced with the open sphere is that 
capsules are not in practice acoustically transparent, so an 
analytic treatment is much more complicated and one may 
need finite element techniques to solve the acoustic 
scattering problem.  Moreover a reasonably dense 
spherical array of non-transparent capsules is in danger of 
creating a cavity resonance with the volume of air within 
the sphere, requiring very precise equalization if the audio 
transient response is not to be adversely affected. 

Can cardioid capsules be mounted on the surface of a 
solid sphere, pointing radially outwards ?  Yes one can 
mount them so, but they then cease to have a cardioid 
response !  A cardioid capsule senses a combination of 
pressure and velocity.  The radial component of velocity 
is however constrained to be zero by the solid surface, so 
capsules that have a cardioid when in free space become 
equivalent to pressure sensors when mounted radially on a 
spherical surface. 

On balance the authors see advantages in using a solid 
sphere.  As discussed, we also wish to make use of the 
velocity sensitivity of first order sensors in order to reduce 
the need for bass boost.  If the radial component of 
velocity is constrained to be zero on the surface of a solid 
sphere, we are led to consider orientating the sensors to 
respond to tangential velocity.  That is, the sensors point 
in directions parallel to the surface rather than radially 
outwards. 

4 SYMMETRY 

For a small number of pressure sensors it has seemed 
sensible to make use of the symmetries of the Platonic 
solids, i.e. tetrahedral, cubic (or octahedral) and 

                                                                                              

to the dual (or reciprocal) problem of sound radiating from a 
spherical surface, with angular dependence given by spherical 
harmonics.  See [9] §323. 

4 I.e. the unit of time is taken as the time taken for sound to 
travel a distance equal to the radius of the sphere. 
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dodecahedral (or icosahedral) symmetry. as this can 
reduce the number of sensors required for a given 
performance.  For example, if one adds together the 
outputs of twelve pressure sensors mounted at the centres 
of a faces of a dodecahedron, a zeroth-order “W” signal is 
recovered with no contamination from any incident 
harmonics of degree one through five.  To achieve the 
same result by solving simultaneous equations on the 
outputs of a ‘random’ array, at least thirty-six sensors 
would in general be required. 

If the thirty-six (or more) randomly placed sensors were 
recessed into the surface of a sphere, so that they had no 
effect on the sound field, it would be simple to derive the 
equations that would need to be solved in order to isolate 
the different harmonics.  However if the sensors do 
present significant acoustic obstruction, a non-
symmetrical array requires sophisticated analysis; 
alternatively the relevant equations may be determined 
empirically by measurement.  Whichever method is used, 
the derivation has to be repeated for each frequency.   

In contrast, if symmetry arguments can be used to isolate 
the different harmonics, then capsules presenting real 
acoustic obstruction can be used, provided that the 
underlying symmetry of the array is not broken.  The 
matrix (in figure 1) required to separate the different 
harmonics is independent of frequency, only the 
equalizations being dependent on the precise acoustic 
behaviour of the capsules.  Moreover, one needs a 
separate equalization only for each degree of harmonic, 
not for each individual harmonic.  Thus, for a second 
order microphone, only three different equalizations need 
to be determined. 

How then can we make use of symmetry with velocity 
sensors ?  If one could use an ‘XY’ sensor, i.e. a sensor 
having uniform two-dimensional sensitivity within the 
plane tangent to the surface of the sphere, the symmetry 
would be retained.  However a conventional velocity 
sensor, such as a figure-of-eight microphone, has a 
preferred axis, and placing such sensors at the centres of 
the faces of a regular polyhedron would destroy the 
polyhedral symmetry. 

Accordingly, the authors have proposed [10] that each 
capsule be associated with an edge rather than with a face 
or a vertex of a polyhedron, the edge providing a natural 
direction so that the directional sensors need not break the 
symmetry. 

5 EDGE MOUNTED SENSORS 

As the regular tetrahedron is the simplest platonic solid, 
we start by considering velocity sensors whose directions 
are aligned with the six edges of a regular tetrahedron. 
The arrangement is indicated in figure 2, the thin lines 
therein indicating the correspondence between each edge 
and its respective sensor.  Each sensor is shown as a thin 
disc, suggestive of the diaphragm of a capacitor figure-of-
eight microphone, so that the axis along which it senses 

velocity is in a direction perpendicular to the plane of the 
disc.  As shown, the sensor is orientated such that the 
plane of the disc includes the corresponding edge of the 
tetrahedron, so the axis direction is perpendicular to the 
edge.   

A variation is to mount the sensors so their axis directions 
are parallel to the respective edges of the tetrahedron or 
other reference polyhedron.  Such a parallel arrangement 
is equivalent to a perpendicular arrangement using the 
dual polyhedron, but as the regular tetrahedron is self-
dual, the perpendicular and parallel orientations are 
equivalent in this case. 

The polyhedron need not exist physically of course, 
instead merely acting as a reference, and in accordance 
with previous reasoning the capsules might be mounted on 
the surface of a sphere enclosing the polyhedron. 

 

Figure 2 : Sensors on the edges of a tetrahedron 

6 SPHERICAL HARMONIC PERFORMANCE 

We now consider the response of the array of figure 2 to a 
sound field whose pressure is expressed as a sum of 
spherical harmonics on a solid sphere on which the 
capsules are mounted.  Table 1 lists the nine harmonics of 
degree up to two, normalized to unit power averaged over 
the sphere and labelled W', X ', Y ', Z', R', S', T', U' and V'.  
For brevity we shall now drop the primes, which have 
been used in table 1 to indicate that the normalization is 
different from that proposed by Furse and Malham [11].  
The expression given for pressure is valid only on the 
surface of the unit sphere x2 + y2+ z2 = 1.  Also shown is 
the pressure gradient, corresponding to the fact that a 
velocity sensor is equivalent to a pressure gradient sensor 
with an internal bass boost.  Again, only the tangential 
component of gradient has validity in the current context, 
because the radial component is constrained to be zero on 
the surface of the sphere. 
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T' 15 y z  ( ) , ,0 15 z 15 y  
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2
 ( ) , ,15 x − 15 y 0  

2 

V' 15 x y  ( ) , ,15 y 15 x 0  
 

Table 1 Spherical harmonic values and gradients 

With suitable choice of coordinate axes and numbering of 
the capsules shown in figure 2, we can now tabulate the 
positions and the capsules and the direction cosines of the 
axes for the capsules, as shown in table 2 

Capsule # Position 
 x, y, z 

Direction cosines 
u, v, w 

1 , ,0 1 0  , ,− 2
2

0
2
2  

2 , ,0 0 1  , ,
2
2

− 2
2

0
 

3 , ,1 0 0  , ,0
2
2

− 2
2  

4 , ,0 0 -1  , ,
2
2

2
2

0
 

5 , ,-1 0 0  , ,0
2
2

2
2  

6 , ,0 -1 0  , ,− 2
2

0 − 2
2  

 

Table 2 Capsule positions and axis directions 

By taking scalar products of the direction cosines in 
table 2 with the pressure gradients in table 1, we can 
derive the responses resp1 resp2, … resp6 of the six 
capsules as: 
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2

0
6
2

0 0 − 15 2
2

0
15 2

2  

Of course, we cannot expect six capsules to resolve nine 
independent harmonics, so it is unsurprising to see some 
linear dependencies, or even zero columns, in this 
matrix A.  The first column indicates zero response to W, 
as would be expected with velocity sensors only.  The 
fifth and eighth columns indicate a zero response to the 
second-degree harmonics R and U.  Further inspection 
shows that the response to S (sixth column) is a scaled 
copy of the response to Y (third column), and similarly 
with T and X, and with V and Z.  So though we are 
considering nine linearly independent excitations, we 
receive only three linearly independent outputs from these 
six capsules ! 

Therefore no second degree harmonics can sensibly be 
retrieved from this array; and the retrieved first degree 
harmonics X, Y and Z will be contaminated by second 
degree harmonics.   

Retrieval and contamination can be assessed more readily 
by inspection of the matrix ATA: 

 = AT A

















0 0 0 0 0 0 0 0 0

0 6 0 0 0 0 6 5 0 0

0 0 6 0 0 6 5 0 0 0

0 0 0 6 0 0 0 0 6 5
0 0 0 0 0 0 0 0 0

0 0 6 5 0 0 30 0 0 0

0 6 5 0 0 0 0 30 0 0
0 0 0 0 0 0 0 0 0

0 0 0 6 5 0 0 0 0 30  

This matrix can be considered to represent a 
straightforward attempt to recover each harmonic by 
taking the scalar product of the array output with the 
output that obtains when the array is excited by that 
harmonic alone.  The diagonal elements in ATA represent 
the strengths of the recovered harmonics, while the off-
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diagonal elements represent contamination from 
‘unwanted’ harmonics when this is done. 

The contamination can be eliminated if the capsules are 
given a ‘twist’ of 45 degrees, i.e. rotated to a direction 
midway between the parallel and perpendicular 
orientations discussed earlier, as shown in figure 3.  The 
direction of twist may be chosen as clockwise or 
anticlockwise, but should be consistent between the 
capsules. 

 

Figure 3 : Tetrahedral arrangement with ‘twist’ of 45° 

With this arrangement, the matrix ATA becomes: 

 = AT A

















0 0 0 0 0 0 0 0 0
0 6 0 0 0 0 0 0 0
0 0 6 0 0 0 0 0 0
0 0 0 6 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 30 0 0 0
0 0 0 0 0 0 30 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 30 

The diagonal elements with value ‘6’ represent the 
response to the first-degree harmonics X, Y and Z, while 
those with value ‘30’ represent the response to the second-
degree harmonics S, T and V.  The array is ‘blind’ to 
harmonics R and U.  The absence of off-diagonal 
elements indicates lack of contamination between first and 
second-order harmonics. 

An alternative interpretation of figure 3 is that the 
capsules lie at the centres of the faces of a cube.  However 
the arrangement does not have hexahedral (cubic) 
symmetry when the directionality of the capsules is taken 
into account. 

We now consider arrangements that are based on the cube 
as a reference polyhedron.  Figure 4 shows cubical 
arrangements of twelve sensors, using perpendicular (top) 
and parallel (bottom) alignment of capsule axes relative to 
the edges of the cube.  (These are equivalent to, 
respectively, parallel and perpendicular arrangements 
relative to the twelve edges of a regular octahedron.) 

 

Figure 4 : Sensors on the edges of a cube 

With twelve capsules we might hope to resolve all eight 
harmonics of first and second degrees, but on computing 
ATA for these two arrays, we find, respectively, 

 = AT A













0 0 0 0 0 0 0 0 0
0 12 0 0 0 0 0 0 0
0 0 12 0 0 0 0 0 0
0 0 0 12 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 60 0 0 0
0 0 0 0 0 0 60 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 60  

and 

 = AT A













0 0 0 0 0 0 0 0 0
0 12 0 0 0 0 0 0 0
0 0 12 0 0 0 0 0 0
0 0 0 12 0 0 0 0 0
0 0 0 0 90 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 90 0
0 0 0 0 0 0 0 0 0

 

In each case the three  diagonal entries with the value 
“12” refer to the first-degree sensitivity (showing a 3dB 
better signal-to-noise ratio than the arrangement of 
figure 3).  The other diagonal entries indicate that the 
perpendicular arrangement “sees” only the S, T and V 
second order components, while the parallel arrangement 
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concentrates the same total amount of second degree 
energy sensitivity (180 units) into the R and U 
components. 

Energy sensitivity can be distributed evenly between the 
second degree components by twisting the capsules by an 
angle tan–1(√(2/3)) = 39.2°, as shown in figure 5. 

 

Figure 5 : Sensors on the edges of a cube, with ‘twist’ 

On recalculating matrix ATA we now obtain: 

 = AT A













0 0 0 0 0 0 0 0 0
0 12 0 0 0 0 0 0 0
0 0 12 0 0 0 0 0 0
0 0 0 12 0 0 0 0 0
0 0 0 0 36 0 0 0 0
0 0 0 0 0 36 0 0 0
0 0 0 0 0 0 36 0 0
0 0 0 0 0 0 0 36 0
0 0 0 0 0 0 0 0 36

 

confirming that an elegant compromise between the two 
previous situations has indeed been found, the first and 
second degree harmonics being resolved unambiguously, 
i.e. without contamination in either direction. 

Analysis to third degree reveals some contamination of 
the retrieved second degree harmonics from third degree 
harmonics.  However, the first degree harmonics X, Y and 
Z are retrieved without third degree contamination, unlike 
with the arrangements previously discussed.  (Such third 
degree contamination is typically manifest as ‘beaming’, 
i.e. sharpening of nominal figure-of-eight polar patterns at 
high frequencies.)  We would thus expect that the 
arrangement of figure 5 could provide the basis for a first-
order microphone with a performance very substantially 
better than current tetrahedral designs (which suffer from 
second-degree as well as third-degree contamination). 

7 RETRIEVING ‘W’ 

As noted, the arrays described so far do not provide a 
degree zero or ‘W’ output.  We propose therefore to 
augment these arrays with one or more pressure sensors.  
Ideally, symmetry should be preserved, and accordingly 
we advocate that a symmetrical arrangement of pressure 
sensors should be incorporated into the surface of the 

solid sphere.  This is shown in figure 6, which is like 
figure 5 but with the reference cube enveloped by a 
sphere, on the surface of which the black dots represent 
pressure sensors, each sensor being placed centrally with 
respect to a face of the (hidden) reference cube, so there 
are six pressure sensors altogether. 

 

Figure 6 : Velocity and pressure sensors on a sphere. 

A zeroth degree output (‘W’) can be obtained by adding 
together the outputs of all six pressure sensors.  This 
output will be uncontaminated by harmonic components 
of degrees one, two and three. 

8 DODECAHEDRAL SENSOR ARRANGEMENT 

Arrays with larger numbers of capsules can of course be 
used, for example as shown in figure 7. 

 

Figure 7 : Dodecahedral arrangement, with “twist”. 

Such a dodecahedral arrangement of 30 sensors provides 
correct recovery of second degree harmonics, irrespective 
of whether a parallel or a perpendicular orientation of the 
sensors is used.  A twist is preferred however, the optimal 
twist being 35.69° relative to the perpendicular 
orientation.  Using the simple and completely stable 
numerical method (of taking scalar products of sensor 
directions with computed pressure gradients) outlined in 
section 6, this arrangement then provides: 
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• correct recovery of all 15 harmonics of degrees 1, 2 
and 3 

• if restricted to degrees 1 and 2, recovery of the eight 
harmonics of these degrees with zero contamination 
from degrees 3 and 4 

Further, a slightly different numerical inversion method, 
still numerically stable (inverting a matrix having 
eigenvalues within a factor 2.2 of each other) can recover 
all 24 harmonics of degrees 1, 2, 3 and 4, thus making 

highly ‘efficient’ use of the information from the 30 
capsules. 

9 COMPLETE STUDIO MICROPHONE 

Combining the ‘W’ retrieval method with one of the 
velocity sensor arrays described above, a complete studio-
quality microphone of first, second or higher order can be 
assembled, the processing being as shown in figure 8. 

Matrix 0

(summation)
Mild EQ

Zero-degree

‘W’

harmonic

Matrix 1 Mild EQ

First degree

‘XYZ’

harmonics

Matrix 2

EQ including

6dB/8ve

bass boost

Second degree

harmonics

Matrix 3

EQ including

12dB/8ve

bass boost

Third degree

harmonics

Velocities

Pressures

 

Figure 8 : Microphone array processing 

Although this is not the only possibility, figure 8 shows 
the simplest case where the pressure sensors within the 
array are used exclusively to provide the “W” output of 
degree zero, while the velocity sensors are used 
exclusively to provide the outputs of degree one and 
higher.  In the case that the pressure sensors are 
arranged in a symmetrical array, the “Matrix 0” 
processing to provide the zero-degree harmonic will 
generally be simple summation. 

As noted, there is one equalization characteristic 
required for each degree of harmonic.  This 
equalization may be determined empirically or, if the 
sensors are considered not to present significant 
acoustic obstruction and are mounted on the surface of 
a solid sphere, calculated analytically as detailed 
earlier. 

10 CONCLUSION 

We have proposed the use of dipole (= “velocity”, 
“pressure gradient” or “figure-of-eight”) sensors as a 
means to reduce the bass boost required in providing 

second-order or higher-order capture of a sound field at 
a point. 

We have displayed several suitable symmetrical 
arrangements of dipole sensors, based on alignment 
relative to the edges of a regular reference polyhedron.  
We have advocated that these sensors be mounted on or 
close to the surface of a solid sphere. 

We have shown an arrangement of twelve velocity 
sensors and six pressure sensors having 
hexahedral/octahedral7 symmetry that can provide a 
first-order microphone of extremely high quality, with 
no bass boost required and complete freedom from 
‘beaming’ at high frequencies caused by contamination 
from third degree components of the sound field.   

This arrangement of twelve sensors can also be used to 
provide a second-order microphone, with only 6dB/8ve 
bass boost required. 

                                                           
7 Or, acknowledging  the twist, chiral octahedral symmetry. 
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We have also shown a dodecahedral arrangement of 
thirty velocity sensors that can be used as the basis of 
an extremely high quality second-order microphone 
that is free from contamination from harmonics of 
degrees three and four.  The same arrangement can also 
be used as the basis of a third-order or a fourth-order 
microphone. 

Practical details that are needed in order to build such a 
microphone, such as the size of the sphere and the 
specifications of the individual sensors, have not been 
addressed in this paper and are under consideration by 
the authors. 
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