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Abstract: Ambisonics represents the sound field as a sum of angularmodes (circular/spherical harmonics). The Ambison-

ics signals representing these angular modes are usually decoded to a set of loudspeakers by mode-matching equations.

This works if the speakers are well-distributed on a circle or sphere. But Ambisonics playback arrangements frequently

do not cover an entire circle or sphere due to practical constraints, which leads to non-trivial problems in decoder design.

This paper presents two approaches to extend the capacities of Ambisonics to partial circular or spherical layouts by

enabling decoder-design with mode-matching. The first approach selects suitable sets of harmonics, based on their sym-

metry and periodicity, and works for some particular partial layouts. But these selections are difficult to use for playback

on default loudspeaker layouts, i.e. a full circle/sphere, and are not applicable to arbitrary partial layouts. So finally,

the paper presents a second approach, which provides full flexibility of partial layouts, while enabling playback on full

default layouts. This favored second approach is driven by a reduced set of signals, which can be utilized to optimize the

requirements for storage and transmission. The authors propose to store and transmit the reduced set of signals within a

file exchange format that includes an appropriate reconstruction matrix.
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1 INTRODUCTION

Ambisonics is a representation of the incident sound field
on a spherical/cylindrical surface based on an expansion
into a number of circular/spherical harmonics signals [1, 2],
the Ambisonics signals. Using a finite order of harmonics
signals results in an ideally smooth limited angular reso-
lution for all angles of incidence on the surface of repro-
duction. Ambisonics is a viable down-mix format for spa-
tialization of many virtual sources, since its reproduction
including dynamic binaural rendering is well-proven and
computationally inexpensive. Ambisonics signals are also
suitable for recording the incident sound field at the surface
of a spherical microphone arrays [3, 4, 5]. Furthermore, it
is suitable for the representation of the radiation from sound
sources, storage of HRIR data sets, etc. although many of
these applications have not been commonly subsumed un-
der the name Ambisonics yet.

Ambisonics has often been regarded being versatile, en-
abling file exchange, variation in the loudspeaker setups,
etc. However, there are many different definitions of chan-
nel sequences and normalizations. Moreover, proper repro-
duction needs the specification of a reference radius, which
allows for adaption to playback layouts of different sizes
[3, 6, 7]. All this emphasizes the need for a well-defined
Ambisonics interchange format that standardizes these pa-
rameters. Currently there are some proposals for file for-
mats to be agreed on, c.f. [7, 8, 9, 10].

Establishing an agreed standard is indeed cumbersome for
a file format and yet worthwhile, but the standardization of
playback layouts should not be a main goal. It is proably the

biggest advantages of Ambisonics that it allows for varia-
tion in the actual loudspeaker positions, i.e. angular resam-
pling. But sampling positions cannot be chosen arbitrarily,
since they are required to cover an entire circle or sphere as
uniformly as possible. However, partial circular/spherical
layouts exist [11], and the intention of the present paper is
to provide reasonable integration of these into the theoreti-
cal framework of Ambisonics, and the format discussion.

The following investigationswill show howmode-matching
for partial layouts becomes feasible. This is done by
harmonics selections based on their symmetry/periodicity
properties, likewise by computation of reduced sets of or-
thogonal base functions for the particular layout. Thereby
the latter approach is favorable, since it shows a desirable
behavior even outside the considered region, and could be
applied to perform angular windowing as well. The reduced
number of audio channels is also beneficial for storage and
transmission. Merely a simple matrix multiplication is re-
quired to restore a default Ambisonics set of signals for
playback on full circular/spherical layouts, c.f. Fig. 1. Like
proposed in [7], the authors strongly advocate the storage of
this reconstruction matrix within a file or streaming format
for interchange.

2 AMBISONICS DRIVING FUNCTIONS

Ambisonics uses circular/spherical driving functions, which
are represented in terms of harmonics. These harmonics
allow for ideally limited angular resolution, i.e. angular
band-limitation, preceding modal matching with a spatially
discrete playback arrangement, cf. [12].
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Figure 1: Reconstruction matrix proposed to restore a full
set of L = 2N + 1 or L = (N + 1)2 ambisonic sig-
nals {sl(t)}L from a smaller set of C transmitted signals
{ŝl(t)}C.

1D. An angularly band-limited driving function x for cir-
cular Ambisonics playbackmay be expressed as the Fourier
series

x(φ) =

N∑

m=−N

ξm Φm(φ), (1)

wherein N is the band-limit, φ the azimuth angle, ξm are
real-valued coefficients, and the base functions are circular
harmonics

Φm(φ) =
√

2−δm

2π

{

cos(mφ) if m ≥ 0,

sin(mφ) if m < 0.
(2)

2D. Equivalently, the band-limited driving function x for
spherical Ambisonics playback is a Fourier series with de-
pendency on both, the azimuth, and zenith angle (φ, θ), us-
ing real-valued coefficients ξnm

x(φ, θ) =
N∑

n=0

n∑

m=−n

ξnm Y m
n (φ, θ). (3)

In this case, the base functions are spherical harmonics

Y m
n (φ, θ) =

√
(2n−1)

2
(n−|m|)!
(n+|m|)! P |m|

n (cos θ)Φm(φ), (4)

composed of associated Legendre functions P
|m|
n and cir-

cular harmonics.

Note that the driving function x, as well as its coefficients
ξ, can be regarded being either a time dependent signal or
factors of a mono signal. In Fig. 1, these are represented as
Ambisonics signals {sl(t)}. This paper uses both interpre-
tations.

Stacked Harmonics Vector Notation. The sums in Eq.(1)
and (3) can be re-written as a scalar vector product

x = ξTb, (5)

with b being a vector containing the stacked harmonics
Φm(φ) or Y m

n (φ, θ). The coefficients ξ are obtained by the
transform integral

ξT =
(
x, bT

)

S
. (6)

using (·, ·)S to denote integration of a product of functions
over the angular domain S (inner product). Whereas for cir-
cular harmonics S = S1 (circle or 1-sphere) and for spheri-
cal harmonics S = S2 (sphere or 2-sphere).

Orthonormality. For band-limited functions x, both cir-

cular/spherical harmonics form orthonormal and complete
sets of functions on either S1 or S2. Hence, insertion of
Eq. (5) into Eq. (6) yields identity

(
b, bT

)

S
= I (7)

3 AMBISONICS ON A BOUNDED
CIRCULAR/SPHERICAL DOMAIN

Playback arrangements for Ambisonics frequently do not
cover an entire circle or sphere, e.g. a semicircle, hemi-
sphere. Although these arrangements are often chosen due
to practical constraints, they might pose non-trivial prob-
lems in Ambisonics decoder design by mode-matching.

Decoding problem. This problem is illustrated using a the-
oretically continuous Ambisonics playback arrangement re-
producing the signals ξ on such a fragment, cf. Eq. (5). Re-
encoding the playback from this bounded domain S̃ ⊂ S
into Ambisonics signals, cf. Eq. (6), analytically yields a
deviation from the original

ξT 6= ξT
(
b, bT

)

S̃
= ξTG. (8)

The L × L matrix G is called Gram matrix. Above it
is not the identiy matrix, so it indicates that orthonormal-
ity of the base-functions b is lost on S̃, cp. Eq. (7). This
will not be problematic as long as the inverse of G ex-
ists, which can be applied to ξT to compensate for the er-
rors ξT =

(
ξTG−1

)
G. Note that this inversion is usu-

ally implicit in Ambisonics decoders computed by mode-
matching. Therefore, the existence of an inverse Gram ma-
trix on the continuous domain is regarded a prerequisite to
discrete Ambisonics decoding. But frequently the inverse
will not exist as linear dependencies emerge, which may
render the matrix G rank deficient

rank(G) = C < L, (9)

i.e. mode-matching fails. Fig. 2 depicts G for circular
harmonics on a semicircular domain S̃ = [0, π] up to
order m = 4. In this example, numerical inversion of
G−1 is infeasible as the condition number [13] is too large
cond(G) = 3 · 105 ≫ 1. In general, the elements of G can
be determined by analytical integration, or estimated using
numerical integration [14].

The proposed approach in this paper considers linearly in-
dependent base functions other than b, the Gram matrix of
which remains invertible on S̃.

3.1. Harmonics selection using symmetry/periodicity

Of course, subsets of selected harmonics b̆ ⊂ b are still
orthonormal on the full domain S. Carefully selected har-
monics may exhibit common symmetry or periodicity prop-
erties, cf. [11]. These harmonics selections even remain or-
thogonal when integrated over either the symmetric half of
their symmetry, or the period of their periodicity. Note that
both are bounded domains S̆ on S, see Fig. 3, hence the
following paragraphs deal with these selections b̆.
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Figure 2: Gram matrix for a semicircular domain.
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Figure 3: Bounded domains: symmetry halves and periods
on the circle and the sphere.

1D symmetries/periodicity. If the driving function x(φ) is
even (or odd) wrt. φ = 0, all sine (respectively cosine) terms
must vanish. Moreover, if x(φ) is a periodic function on a
natural fraction of the circle 360◦

K , all ξm must vanish, for
whichm is no integer multiple k·K. The circular harmonics
exhibit the following symmetry/periodicity properties

Φm(φ) is







even, for m ≥ 0,

odd, for m < 0,
2π
K -periodic, for m = k · K, k ∈ Z.

(10)

The non-zero coefficients of an even and a π-periodic func-
tion are illustrated as colored divisions in Fig. 4(a) and (b).

2D symmetries/periodicity. Obviously, the spherical har-
monics have the same azimuthal symmetry/periodicity as
the circular harmonics, but also exhibit symmetry proper-
ties wrt. θ = π

2 , which are determined by the associated
Legendre functions Pm

n (cos θ). They are even/odd func-
tions wrt. θ = π

2 depending on whether m + n is even/odd.

Y m
n (φ, θ) is







even wrt. φ = 0, for m ≥ 0,

odd wrt. φ = 0, for m < 0,
2π
K -periodic in φ, for m = k · K, k ∈ Z,

even wrt. θ = π
2 , for m + n even,

odd wrt. θ = π
2 , for m + n odd.

(11)
In Fig. 4(c) the non-zero coefficients of an even function on
the sphere concerning the equator are colored.

Harmonics selection. Eqs. (10) (11) indicate which har-
monics b̆ to select, to obtain certain symmetry/periodicity
properties. We do this by a rectangular matrix R, contain-
ing a single non-zero entry “1” in each row to select match-

1 2 3 40−1−2−3−4−N N

m=

· · ·· · ·

(a)

1 2 3 40−1−2−3−4−N N

m=

· · ·· · ·

(b)

1 2 3 40−1−2−3−4
m =

n=3

n=4

n=2

n=1

n=0

n=N

...

−N N· · · · · ·

(c)

Figure 4: Non-zero coefficients (gray divisions) for (a)
even functions and (b) π-periodic functions on the circle
and (c) functions on the sphere, which are even with respect
to the equator.

ing harmonics out of b

b̆ = R b. (12)

A driving function with equal symmetry/periodicity is ex-
pressible in b̆ by using the coefficients ξ̆T

x = ξ̆Tb̆. (13)

To investigate the orthogonality of b̆, its Gram matrix can
be used. It is easy to show that

(
b̆, b̆T

)
retains its orthonor-

mality Ğ = α I when integrated over the period/symmetric
half, up to some scale factor α = 1/2 or 1/K. It relates to
the ill-conditioned matrix G using Eq. (12)

Ğ =
(
b̆, b̆T

)

S̆
= R G RT. (14)

The conversion of the coefficients is done by left multipli-
cation of Eq. (12) by ξ̆T, and comparison with Eq. (5)

ξT = ξ̆TR. (15)

A steering vector for the bounded domain can be found by
its right inverse ξ̆T = ξTR†, which is ξ̆T = ξTRT, here.

Example: Semicircle. For the semicircle S̆=[0, π], even,
odd, and periodic selections are suitable as orthogonal base
functions, defined by the matrices

Re =
[
0 I

]
, Ro =

[
I 0

]
, (16)

Rp =











. . .
...

1 0 0 0 0 . . .
0 0 1 0 0

. . . 0 0 0 0 1
...

. . .











. (17)
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m

-4 -3 -2 -1 0 1 2 3 4

4

3

2

1

0

-1

-2

-3

-4

m
’

(c) Ğp

Figure 5: Examples of circular harmonics selection
schemes that orthogonalize the Gram-matrix on a semicir-
cular domain: (a) even, (b) odd, or (c) periodic functions.

As depicted in Fig. 5, the Gram-matrices Ğ = R G RT of
these three selections finally become orthogonal on S̆.

Defect 1: Angular limitation. Selecting harmonics b̆ with
certain symmetry/periodicity works perfectly well for driv-
ing functions which are strictly angularly limited to S̆. Per-
fect angular limitation implies unlimited angular resolution,
but usually only angularly band-limited driving functions
are considered. This leads to unwanted interference due
to symmetric/periodic extension of the non angularly lim-
ited functions. Fig. 6 illustrates a 1D driving function of a
virtual point sources at different angles, using semicircular
periodicity and even symmetry. The errors are biggest for
sources near the domain boundaries. In particular, period-
icity yields a "‘ghost source"’ near the opposite boundary,
cf. Fig. 6(b), whereas symmetry yields a distorted peak, cf.
Fig. 6(c). A further drawback of the harmonics selection ap-
proach is that the bounded domain underlies the restrictions
of the available symmetry/periodicity axis/planes. Angular
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Figure 6: Driving functions of a point source encoded at
various angles with (a) a full set of circular harmonics, (b)
only π-periodic functions and (c) only the even function
(cosine terms).

filtering (max-rE, in-phase, [3]) will cause further degrada-
tion, since unwanted source-images spread over the entire
domain, also.

Defect 2: Reproduction on full domain. As claimed in the
introduction, a versatile format should allow for file inter-
change, independent of the layout. So a crucial question is,
do the selected harmonics allow for sensible reproduction
on the full domain? The reduced coefficients vector ξ̆ can
be extended a full set of coefficients ξ by Eq. (15). How-
ever, due to the symmetry and periodicity of the selected
harmonics, the bounded domain driving function is period-
ically/symmetrically repeated over the full domain. In gen-
eral, symmetric or periodic images of the virtual sources
are neither acceptable, nor easy to suppress. One possible
solution might be angular windowing expressed within the
harmonics domain. Appropriate window matrices could be
included in R, but it is infeasible to find low-order window
designs achieving satisfactorily steep supression.

3.2. Other harmonics selection schemes (HVP, FuMa)

There are other selection strategies for the spherical har-
monics, cf. [3, 9, 15, 16, 17], which try to enable decoding
on irregularly resolved domains. Anisotropic resolution and
directional resolution on the sphere are fascinating ideas,
but have not been regarded yet for this paper. A closer in-
vestigation considering the mathematical evaluation thereof
should be considered in future research.
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3.3. Band-limited orthonormal base functions

for a bounded domain

As mentioned before, arbitrarily shaped bounded domains
S̃ do not allow for simple harmonics selections. However,
there are other strategies to find base functions that are lin-
early independent on bounded circular/spherical domains.
The approach presented here does not share the elegance of
symmetry/periodicity, but circumvents all of its defects; it
has been originally outlined in [18].

SS

S̃ ⊂ S S̃ ∈ S

Figure 7: Bounded domains on spheres and circles in gen-
eral.

New orthonormal band-limited functions. Let’s assume a
reconstruction matrix R that computes an angularly band-
limited set of base functions b̃ from b, which is orthonormal
on an arbitrarily bounded domain S̃, Fig. 7

b̃ = R b, (18)

G̃ =
(
b̃, b̃T

)

S̃
= R G RT = I. (19)

Any band-limited function x defined on S̃ can be expressed
as a linear combination of the new base functions

x = ξ̃T b̃, (20)

with ξ̃ being a real-valued coefficient-vector.

Orthonormal 1D → 2D mapping. If instead of R the new
base functions b̃ themselves are known, the harmonics b

can be expanded into b̃ on the bounded domain, yielding
the matrix W , cf. [18]

b =
(
b̃T, b

)

S̃
b̃ = W b̃, (21)

which is not always invertible to obtain R.

In the particular case of cutting out a circular domain from
a sphere, e.g. at its equator θ = π/2, orthogonal base func-
tions for both, the original and bounded domain, are explic-
itly given

bnm = Y m
n (φ, θ), b̃m′ = Φm′(φ). (22)

While disregarding their values on the rest of the sphere,
the spherical harmonics evaluated at θ = π/2 are exactly
expressible in circular harmonics. The elements of this 2D
to 1D mapping rule W are found by the circular harmonics

transform integral of Y m
n (φ, π/2)

Wnm
m′ =

(
b̃m′ , bnm|θ=π

2

)

S1
(23)

=

∫

S1

Y m
n (φ, π

2 )Φm′(φ) dφ

=
√

(2n−1)
2

(n−|m|)!
(n+|m|)! P |m|

n (0)

∫

S1

Φm′(φ)Φm(φ) dφ

=
√

(2n−1)
2

(n−|m|)!
(n+|m|)! P |m|

n (0) δmm′ .

To achieve conversion from 1D to 2D, a reconstruction ma-
trix is found by the existing pseudo-inverse

R = (W TW )−1W T. (24)

The under-determined system of equations implies that
the reconstruction using R is constrained to be exact at
θ = π/2, while minimizing the squared magnitude1 on
S2. In the literature on beamforming [20], this minimiza-
tion problem is called minimum-variance distortionless-
response (MVDR).

Computation of new base functions by Eigendecompo-

sition. Usually, neither the orthogonal base functions b̃ on
the bounded circular/spherical domain, nor the matrixR are
known. Therefore, the reconstruction matrix R cannot be
computed like in the example above. Nevertheless, a suit-
able approach can found in geodesy literature on decom-
position restricted spherical domains [18]. This approach
finally yields a set of new base functions b̃ based on the
harmonics b.

Insertion of Eq. (21) into Eq. (8) reveals the relation of W

to the singular Gram-matrix G of b

G =
(
b, bT

)

S̃
= W

(

b̃, b̃T
)

S̃
W T = WW T, (25)

which can be computed by numerical/analytical integration.
Due to its structure, G can be factorized using real-valued
eigendecomposition

G = WW T = V DV T, (26)

hereby D is a diagonal matrix containing the eigenvalues
and V is a square matrix, the columns of which are the
corresponding eigenvectors.

Reconstruction matrix by regularization. From Eqs. (25)
(19) we see that R should be left inverse to W

G̃ = RW W T RT !
= I, (27)

but since G becomes rank-deficient, i.e. some eigenvalues
will be close to zero, and R will not exist

R = diag{1/d1, 1/d2, · · · , 1/dC, 1/0, · · · , 1/0
︸ ︷︷ ︸

∄

}1/2V T.

(28)

1Note that this minimization will only work using the fully normal-
ized spherical harmonics due to the Parseval theorem, cf. [19]. Semi-
normalized spherical harmonics will lead to weak minimization of the
higher order harmonics and therefore are subobtimal.
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However, using the eigenvectors VC associated with the
non-zero eigenvalues DC = diag {d1, d2, · · · , dC} ex-
clusively, yields a smaller set of orthonormal functions, for
which orthonormality holds

D
−1/2
C V T

C VC DC V T
C VC D

−1/2
C = IC. (29)

These new base functions are

b̃ = R b, R = D
−1/2
C V T

C . (30)

Essentially, this already is the final result, but the angular
harmonics b will usually appear strongly mixed in the new
base functions b̃. Therefore, b̃ will lose any evident relation
to angular resolution or wave-length.

De-mixed base functions by triangular decomposition (QR).

As given in [18], a more de-mixed set of base functions can
be determined by QR-decomposition of the reconstruction
matrix R into an orthonormal matrix Q and an upper trian-
gular matrix R̂

b̃ = R b = QR̂ b. (31)

The orthonormality is exploited by left-multiplying Eq.(31)
with QT, and yields the base functions b̂ = QTb̃

b̂ = R̂ b. (32)

Due to the triangular structure of R̂, the angular harmon-
ics appear less mixed in b̂ than in b̃, so an interpretation in
terms of angular wave-lengths becomes easier. Note that the
particular result depends on the sequence of the harmonics
in b: The functions at the bottom of b̂ contain the smallest
number of mixed harmonics, which will be combinations of
the harmonics at the bottom of b, in particular.

Reconstruction matrix, steering vector. Comparison after
left multiplication of Eq. (32) by the expansion coefficients
ξ̂T yields the conversion rule for coefficients, with the re-
construction matrix R̂

ξT = ξ̂T R̂. (33)

Its pseudo-inverse Ŵ = R̂† = VCD
1/2
C Q is helpful as

well, if a given Ambisonics signal shall be bounded to the
domain S̃ by conversion into ξ̂, or a steering vector shall be
found from its harmonics equivalent ξ on the full domain.

Decoding. Given the Q × L matrix B with the harmonics
suitably sampled at Q discrete loudspeakers locations on a
bounded circular/spherical domain, a decoder is defined by
the mode-matching equation

ξT !
= gT B, (34)

wherein g are the driving weights for the loudspeakers.
Usually, right inversion of B fails, but B̂ = B Ŵ is in-
vertible:

ξ̂T !
= gT B̂, (35)

⇒ gT = ξ̂TB̂T
(

B̂TB̂
)−1

.

Example: 3/10 portion of a circle. The example given in
Fig. 8 shows the performance of the proposed approach.
The illustrations depict a virtual point source near the bor-
der of a bounded circular domain, using 3/10 of a circle
and a cut-off order of N = 15. From the original 31 base
functions, a reduction to 12 functions was found sufficiently
regular and accurate. Astonishingly, this approach yields
reasonable rejection outside of S̃, in contrast to symme-
try/periodicity based harmonics selections. The actual base-
functions are plotted in Fig. 9. For the triangular decom-
position, the harmonics have been sorted so that the first
base-functios contain lower-order harmonics, mainly.
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(d) φ = 64
◦

Figure 8: Driving functions of a point source on 3/10 of a
circle S̃ = [−54◦, 54◦], using the 12 base functions b̂ de-
picted in Fig. 9 compared the full set of 31 circular harmon-
ics b encoded at various angles near the domain boundary,
N = 15.

4 FILE FORMAT

From discussions at the institution of the authors, several
ideas on the design of a suitable Ambisoncis exchange
format have been found, which will be summarized here.
Fig. 10 illustrates information items that are considered im-
portant.

File contents: An Ambisonics file format is probably the
best container for spherically irradiating, as well as spheri-
cally radiating sound fields. Therefore, a suitable file format
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Figure 9: 12 base functions b̂ on 3/10 of a circle S̃ =
[−54◦, 54◦] using N = 15.

should be capable of containing

1. incident sound fields recorded with compact circu-
lar/spherical microphone arrays

2. studio/art productions rendered for circular or spheri-
cal (binaural) Ambisonics playback
with or without distance coding, enabling reconstruc-

tion from bounded circular/spherical domain signals

3. (individual) spherical harmonics head related impulse
responses
faciliating binaural Ambisonics rendering and angular

resampling/interpolation

4. sound radiation of sources recorded with big circu-
lar/spherical microphone arrays
for playback with compact spherical loudspeaker ar-

rays, or auralization/rendering using object (source)

oriented spatial rendering

5. studio/art productions rendered for compact spherical
loudspeaker arrays

Some of the above data are also important for object related
mixing approaches [21], as they provide source directiv-
ity information, but also allow for inclusion of Ambisonics
playback from recordings/productions. Conversely, as the
object related mixing approach is also flexible with respect
to different spatial audio rendering techniques, Ambisonics

can be used as an output format [22, 23].

Required Data: For distance-coding, the reference radius

is a necessary information that describes for which size the
Ambisonics production has been rendered [7, 24, 12]. But
also for source radiation recordings, spherical harmonics
HRIRs, spherical microphone array recordings, as well as
productions for compact spherical loudspeaker arrays, the
specification of a reference radius is mandatory. If given in
meters, the speed of sound also needs to be specified. Al-
ternatively, the reference radius can be specified as a flight-
time in samples.

The promising examples show that Ambisonics can be ex-
tended to describe driving functions for fragments (arcs,
segments, belts, . . . ) of ciruclar/spherical layouts. The re-
quired set of signals is reduced to a smaller set. Ambison-
ics playback from these signals is obtained by a reconstruc-
tion matrix. Reconstruction is always feasible without se-
vere degradation, as good suppression on the unused angu-
lar portion is achievable. The reconstruction matrix is con-
sidered as mandatory to enable interchange of partial circu-
lar/spherical domain material.

Furthermore, the extension of the file by further metadata
could be quite useful.

Ambisonics file / streaming header

block length, number of channels, header size

data/chunk size, sample rate

1D / 2D selector
reference radius (playback/recording)










R1,1, · · · R1,C

R2,1, · · · R2,C

R3,1, · · · R3,C
... . . . ...

RL,1, · · · , RL,C










metadata:

irradiation (sound scene, HRIR),
radiation (sound source), etc.

reconstruction matrix

obtains L Ambisonic singals
from C channels;

faciliates decoder design

Ambisonics file / streaming signal data

ŝ2[0]
ŝ2[1]

ŝ2[2]
...

ŝC[0]
ŝC[1]

ŝC[2]
...

. . . . . . . . .

. . . . . . . . .

ŝ1[0]
ŝ1[1]

ŝ1[2]
...

Figure 10: Proposed contents of an Ambisonics
file/streaming format.

5 CONCLUSION

This paper has successively presented a symme-
try/periodicity based approach, and an outperforming
eigendecomposition-based approach. The latter extends
Ambisonics decoding so that it also works on bounded
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circular/spherical playback arrangements. Therefore, loud-
speaker layouts can be made more flexible. Furthermore,
this technique has the effect of angular windowing (without
using convolution/Gaunt-coefficients explicitly). It turns
out that Ambisonics uses a reduced set of base functions on
the partial cirlces/spheres, which allows for a reduced effort
in audio-transmisson or storage. To make this reduction
accessible, while remainig compatible to full default
Ambisonics sets, a reconstruction matrix has to used in the
file/audio stream. One of the shortcomings of this approach
is that distance coding will only work with restrictions.
Anisotropic, or directional resolution approaches have not
been tested within this work and might be subject to future
studies.
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